深度RNN通用性的最小宽度

Changhoon Song, Geonho Hwang, Jun ho Lee, Myung-joo Kang
{"title":"深度RNN通用性的最小宽度","authors":"Changhoon Song, Geonho Hwang, Jun ho Lee, Myung-joo Kang","doi":"10.48550/arXiv.2211.13866","DOIUrl":null,"url":null,"abstract":"A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or $L^p$ function with the widths $d_x+d_y+2$ and $\\max\\{d_x+1,d_y\\}$, respectively, where the target function maps a finite sequence of vectors in $\\mathbb{R}^{d_x}$ to a finite sequence of vectors in $\\mathbb{R}^{d_y}$. We also compute the additional width required if the activation function is $\\tanh$ or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"200 1","pages":"121:1-121:41"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimal Width for Universal Property of Deep RNN\",\"authors\":\"Changhoon Song, Geonho Hwang, Jun ho Lee, Myung-joo Kang\",\"doi\":\"10.48550/arXiv.2211.13866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or $L^p$ function with the widths $d_x+d_y+2$ and $\\\\max\\\\{d_x+1,d_y\\\\}$, respectively, where the target function maps a finite sequence of vectors in $\\\\mathbb{R}^{d_x}$ to a finite sequence of vectors in $\\\\mathbb{R}^{d_y}$. We also compute the additional width required if the activation function is $\\\\tanh$ or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"200 1\",\"pages\":\"121:1-121:41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.13866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.13866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

递归神经网络(RNN)是一种广泛应用于序列数据处理的深度学习网络。无限宽RNN可以模拟动态系统,在紧域上近似任何开放的动态系统。一般来说,在实践中,有界宽度的深度网络比宽网络更有效;然而,深窄结构的普遍近似定理还没有得到广泛的研究。在本研究中,我们证明了深窄rnn的普遍性,并证明了普遍性的最小宽度的上界可以独立于数据的长度。具体来说,我们证明了具有ReLU激活的深度RNN可以分别近似宽度为$d_x+d_y+2$和$\max\{d_x+1,d_y\}$的任何连续函数或$L^p$函数,其中目标函数将$\mathbb{R}^{d_x}$中的有限向量序列映射到$\mathbb{R}^{d_y}$中的有限向量序列。如果激活函数为$\tanh$或更多,我们还计算所需的额外宽度。此外,我们证明了其他递归网络的通用性,如双向rnn。将多层感知器和RNN连接起来,我们的理论和证明技术可以成为进一步研究深度RNN的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Width for Universal Property of Deep RNN
A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or $L^p$ function with the widths $d_x+d_y+2$ and $\max\{d_x+1,d_y\}$, respectively, where the target function maps a finite sequence of vectors in $\mathbb{R}^{d_x}$ to a finite sequence of vectors in $\mathbb{R}^{d_y}$. We also compute the additional width required if the activation function is $\tanh$ or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信