基于MM算法的事故频率模型参数快速有效估计

Issa Cherif Geraldo, Edoh Katchekpele, T. A. Kpanzou
{"title":"基于MM算法的事故频率模型参数快速有效估计","authors":"Issa Cherif Geraldo, Edoh Katchekpele, T. A. Kpanzou","doi":"10.1155/2023/3377201","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a multivariate statistical model of accident frequencies having a variable number of parameters and whose parameters are dependent and subject to box constraints and linear equality constraints. We design a minorization-maximization (MM) algorithm and an accelerated MM algorithm to compute the maximum likelihood estimates of the parameters. We illustrate, through simulations, the performance of our proposed MM algorithm and its accelerated version by comparing them to Newton-Raphson (NR) and quasi-Newton algorithms. The results suggest that the MM algorithm and its accelerated version are better in terms of convergence proportion and, as the number of parameters increases, they are also better in terms of computation time.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"44 2 1","pages":"3377201:1-3377201:10"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fast and Efficient Estimation of the Parameters of a Model of Accident Frequencies via an MM Algorithm\",\"authors\":\"Issa Cherif Geraldo, Edoh Katchekpele, T. A. Kpanzou\",\"doi\":\"10.1155/2023/3377201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a multivariate statistical model of accident frequencies having a variable number of parameters and whose parameters are dependent and subject to box constraints and linear equality constraints. We design a minorization-maximization (MM) algorithm and an accelerated MM algorithm to compute the maximum likelihood estimates of the parameters. We illustrate, through simulations, the performance of our proposed MM algorithm and its accelerated version by comparing them to Newton-Raphson (NR) and quasi-Newton algorithms. The results suggest that the MM algorithm and its accelerated version are better in terms of convergence proportion and, as the number of parameters increases, they are also better in terms of computation time.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"44 2 1\",\"pages\":\"3377201:1-3377201:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3377201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3377201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了一个具有可变数量参数的事故频率的多元统计模型,该模型的参数是相关的,并受盒形约束和线性等式约束。我们设计了一个最小化最大化(MM)算法和一个加速的MM算法来计算参数的最大似然估计。我们通过仿真来说明我们提出的MM算法及其加速版本的性能,并将它们与Newton-Raphson (NR)和准牛顿算法进行比较。结果表明,MM算法及其加速版本在收敛比例上更胜一筹,并且随着参数数量的增加,其计算时间也更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast and Efficient Estimation of the Parameters of a Model of Accident Frequencies via an MM Algorithm
In this paper, we consider a multivariate statistical model of accident frequencies having a variable number of parameters and whose parameters are dependent and subject to box constraints and linear equality constraints. We design a minorization-maximization (MM) algorithm and an accelerated MM algorithm to compute the maximum likelihood estimates of the parameters. We illustrate, through simulations, the performance of our proposed MM algorithm and its accelerated version by comparing them to Newton-Raphson (NR) and quasi-Newton algorithms. The results suggest that the MM algorithm and its accelerated version are better in terms of convergence proportion and, as the number of parameters increases, they are also better in terms of computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信