{"title":"零膨胀计数时间序列的自回归和移动平均模型","authors":"Vurukonda Sathish, S. Mukhopadhyay, R. Tiwari","doi":"10.1111/stan.12255","DOIUrl":null,"url":null,"abstract":"Zero inflation is a common nuisance while monitoring disease progression over time. This article proposes a new observation‐driven model for zero‐inflated and over‐dispersed count time series. The counts given from the past history of the process and available information on covariates are assumed to be distributed as a mixture of a Poisson distribution and a distribution degenerated at zero, with a time‐dependent mixing probability, πt . Since, count data usually suffers from overdispersion, a Gamma distribution is used to model the excess variation, resulting in a zero‐inflated negative binomial regression model with mean parameter λt . Linear predictors with autoregressive and moving average (ARMA) type terms, covariates, seasonality and trend are fitted to λt and πt through canonical link generalized linear models. Estimation is done using maximum likelihood aided by iterative algorithms, such as Newton‐Raphson (NR) and Expectation and Maximization. Theoretical results on the consistency and asymptotic normality of the estimators are given. The proposed model is illustrated using in‐depth simulation studies and two disease datasets.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autoregressive and moving average models for zero‐inflated count time series\",\"authors\":\"Vurukonda Sathish, S. Mukhopadhyay, R. Tiwari\",\"doi\":\"10.1111/stan.12255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero inflation is a common nuisance while monitoring disease progression over time. This article proposes a new observation‐driven model for zero‐inflated and over‐dispersed count time series. The counts given from the past history of the process and available information on covariates are assumed to be distributed as a mixture of a Poisson distribution and a distribution degenerated at zero, with a time‐dependent mixing probability, πt . Since, count data usually suffers from overdispersion, a Gamma distribution is used to model the excess variation, resulting in a zero‐inflated negative binomial regression model with mean parameter λt . Linear predictors with autoregressive and moving average (ARMA) type terms, covariates, seasonality and trend are fitted to λt and πt through canonical link generalized linear models. Estimation is done using maximum likelihood aided by iterative algorithms, such as Newton‐Raphson (NR) and Expectation and Maximization. Theoretical results on the consistency and asymptotic normality of the estimators are given. The proposed model is illustrated using in‐depth simulation studies and two disease datasets.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12255\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12255","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
摘要
随着时间的推移监测疾病进展时,零通胀是一个常见的麻烦。本文提出了一个新的观测驱动模型,用于零膨胀和过分散计数时间序列。从过去的过程历史中给出的计数和有关协变量的可用信息被假设为泊松分布和在零处退化的分布的混合分布,具有时间相关的混合概率πt。由于计数数据通常存在过度分散,因此使用Gamma分布来模拟过度变化,从而产生具有平均参数λt的零膨胀负二项回归模型。通过正则链接广义线性模型拟合具有自回归和移动平均(ARMA)型项、协变量、季节性和趋势的线性预测因子λt和πt。估计是在迭代算法(如Newton - Raphson (NR)和Expectation and Maximization)的辅助下使用最大似然来完成的。给出了估计量的相合性和渐近正态性的理论结果。所提出的模型使用深度模拟研究和两个疾病数据集来说明。
Autoregressive and moving average models for zero‐inflated count time series
Zero inflation is a common nuisance while monitoring disease progression over time. This article proposes a new observation‐driven model for zero‐inflated and over‐dispersed count time series. The counts given from the past history of the process and available information on covariates are assumed to be distributed as a mixture of a Poisson distribution and a distribution degenerated at zero, with a time‐dependent mixing probability, πt . Since, count data usually suffers from overdispersion, a Gamma distribution is used to model the excess variation, resulting in a zero‐inflated negative binomial regression model with mean parameter λt . Linear predictors with autoregressive and moving average (ARMA) type terms, covariates, seasonality and trend are fitted to λt and πt through canonical link generalized linear models. Estimation is done using maximum likelihood aided by iterative algorithms, such as Newton‐Raphson (NR) and Expectation and Maximization. Theoretical results on the consistency and asymptotic normality of the estimators are given. The proposed model is illustrated using in‐depth simulation studies and two disease datasets.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.