含时滞的奇摄动对流扩散反应问题的拟合数值格式

IF 0.7 Q4 MECHANICS
M. Woldaregay, W. Aniley, G. Duressa
{"title":"含时滞的奇摄动对流扩散反应问题的拟合数值格式","authors":"M. Woldaregay, W. Aniley, G. Duressa","doi":"10.2298/tam201208006w","DOIUrl":null,"url":null,"abstract":"This paper deals with solution methods for singularly perturbed delay differential equations having delay on the convection and reaction terms. The considered problem exhibits an exponential boundary layer on the left or right side of the domain. The terms with the delay are treated using Taylor?s series approximation and the resulting singularly perturbed boundary value problem is solved using a specially designed exponentially finite difference method. The stability of the scheme is analysed and investigated using a comparison principle and solution bound. The formulated scheme converges uniformly with linear order of convergence. The theoretical findings are validated using three numerical test examples.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fitted numerical scheme for singularly perturbed convection-diffusion reaction problems involving delays\",\"authors\":\"M. Woldaregay, W. Aniley, G. Duressa\",\"doi\":\"10.2298/tam201208006w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with solution methods for singularly perturbed delay differential equations having delay on the convection and reaction terms. The considered problem exhibits an exponential boundary layer on the left or right side of the domain. The terms with the delay are treated using Taylor?s series approximation and the resulting singularly perturbed boundary value problem is solved using a specially designed exponentially finite difference method. The stability of the scheme is analysed and investigated using a comparison principle and solution bound. The formulated scheme converges uniformly with linear order of convergence. The theoretical findings are validated using three numerical test examples.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam201208006w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam201208006w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了对流项和反应项均有时滞的奇摄动时滞微分方程的解法。所考虑的问题在区域的左侧或右侧显示一个指数边界层。延期的条款是用泰勒处理的?用特别设计的指数有限差分法求解S级数近似和由此产生的奇摄动边值问题。利用比较原理和解界分析和研究了该方案的稳定性。该格式具有线性收敛阶,一致收敛。通过三个数值算例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitted numerical scheme for singularly perturbed convection-diffusion reaction problems involving delays
This paper deals with solution methods for singularly perturbed delay differential equations having delay on the convection and reaction terms. The considered problem exhibits an exponential boundary layer on the left or right side of the domain. The terms with the delay are treated using Taylor?s series approximation and the resulting singularly perturbed boundary value problem is solved using a specially designed exponentially finite difference method. The stability of the scheme is analysed and investigated using a comparison principle and solution bound. The formulated scheme converges uniformly with linear order of convergence. The theoretical findings are validated using three numerical test examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信