高阶分数阶变分规划中的多目标对称对偶性

Arshpreet Kaur, M. K. Sharma, I. Ahmad
{"title":"高阶分数阶变分规划中的多目标对称对偶性","authors":"Arshpreet Kaur, M. K. Sharma, I. Ahmad","doi":"10.1142/s0217595922500087","DOIUrl":null,"url":null,"abstract":"We introduce new classes of higher-order functional, termed higher-order [Formula: see text]convex and higher-order [Formula: see text]convex functionals. These classes are illustrated by nontrivial examples. A pair of higher-order multiobjective symmetric fractional variational programs with cone constraints and fixed boundary conditions is formulated. Appropriate duality results are discussed utilizing the aforementioned assumptions. The results in this paper are generalizations of the results already existing in literature.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"17 1","pages":"2250008:1-2250008:24"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiobjective Symmetric Duality in Higher-Order Fractional Variational Programming\",\"authors\":\"Arshpreet Kaur, M. K. Sharma, I. Ahmad\",\"doi\":\"10.1142/s0217595922500087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce new classes of higher-order functional, termed higher-order [Formula: see text]convex and higher-order [Formula: see text]convex functionals. These classes are illustrated by nontrivial examples. A pair of higher-order multiobjective symmetric fractional variational programs with cone constraints and fixed boundary conditions is formulated. Appropriate duality results are discussed utilizing the aforementioned assumptions. The results in this paper are generalizations of the results already existing in literature.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":\"17 1\",\"pages\":\"2250008:1-2250008:24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595922500087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922500087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了新的高阶泛函类,称为高阶[公式:见文]凸泛函和高阶[公式:见文]凸泛函。这些类通过一些重要的例子来说明。构造了具有锥约束和固定边界条件的一对高阶多目标对称分数变分规划。利用上述假设讨论了适当的对偶结果。本文的结果是对已有文献结果的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective Symmetric Duality in Higher-Order Fractional Variational Programming
We introduce new classes of higher-order functional, termed higher-order [Formula: see text]convex and higher-order [Formula: see text]convex functionals. These classes are illustrated by nontrivial examples. A pair of higher-order multiobjective symmetric fractional variational programs with cone constraints and fixed boundary conditions is formulated. Appropriate duality results are discussed utilizing the aforementioned assumptions. The results in this paper are generalizations of the results already existing in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信