D. Shoukroun, A. Doherty, M. Endrizzi, D. Bate, P. Fromme, A. Olivo
{"title":"边缘照明x射线相衬成像的采集后掩模不对中校正。","authors":"D. Shoukroun, A. Doherty, M. Endrizzi, D. Bate, P. Fromme, A. Olivo","doi":"10.1063/5.0090517","DOIUrl":null,"url":null,"abstract":"Edge illumination x-ray phase contrast imaging uses a set of apertured masks to translate phase effects into variation of detected intensity. While the system is relatively robust against misalignment, mask movement during acquisition can lead to gradient artifacts. A method has been developed to correct the images by quantifying the misalignment post-acquisition and implementing correction maps to remove the gradient artifact. Images of a woven carbon fiber composite plate containing porosity were used as examples to demonstrate the image correction process. The gradient formed during image acquisition was removed without affecting the image quality, and results were subsequently used for quantification of porosity, indicating that the gradient correction did not affect the quantitative content of the images.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"9 1","pages":"053706"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Post-acquisition mask misalignment correction for edge illumination x-ray phase contrast imaging.\",\"authors\":\"D. Shoukroun, A. Doherty, M. Endrizzi, D. Bate, P. Fromme, A. Olivo\",\"doi\":\"10.1063/5.0090517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge illumination x-ray phase contrast imaging uses a set of apertured masks to translate phase effects into variation of detected intensity. While the system is relatively robust against misalignment, mask movement during acquisition can lead to gradient artifacts. A method has been developed to correct the images by quantifying the misalignment post-acquisition and implementing correction maps to remove the gradient artifact. Images of a woven carbon fiber composite plate containing porosity were used as examples to demonstrate the image correction process. The gradient formed during image acquisition was removed without affecting the image quality, and results were subsequently used for quantification of porosity, indicating that the gradient correction did not affect the quantitative content of the images.\",\"PeriodicalId\":54761,\"journal\":{\"name\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"volume\":\"9 1\",\"pages\":\"053706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0090517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0090517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge illumination x-ray phase contrast imaging uses a set of apertured masks to translate phase effects into variation of detected intensity. While the system is relatively robust against misalignment, mask movement during acquisition can lead to gradient artifacts. A method has been developed to correct the images by quantifying the misalignment post-acquisition and implementing correction maps to remove the gradient artifact. Images of a woven carbon fiber composite plate containing porosity were used as examples to demonstrate the image correction process. The gradient formed during image acquisition was removed without affecting the image quality, and results were subsequently used for quantification of porosity, indicating that the gradient correction did not affect the quantitative content of the images.