基于动态分形分析的动态纹理分类

Yong Xu, Yuhui Quan, Haibin Ling, Hui Ji
{"title":"基于动态分形分析的动态纹理分类","authors":"Yong Xu, Yuhui Quan, Haibin Ling, Hui Ji","doi":"10.1109/ICCV.2011.6126372","DOIUrl":null,"url":null,"abstract":"In this paper, we developed a novel tool called dynamic fractal analysis for dynamic texture (DT) classification, which not only provides a rich description of DT but also has strong robustness to environmental changes. The resulting dynamic fractal spectrum (DFS) for DT sequences consists of two components: One is the volumetric dynamic fractal spectrum component (V-DFS) that captures the stochastic self-similarities of DT sequences as 3D volume datasets; the other is the multi-slice dynamic fractal spectrum component (S-DFS) that encodes fractal structures of DT sequences on 2D slices along different views of the 3D volume. Various types of measures of DT sequences are collected in our approach to analyze DT sequences from different perspectives. The experimental evaluation is conducted on three widely used benchmark datasets. In all the experiments, our method demonstrated excellent performance in comparison with state-of-the-art approaches.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Dynamic texture classification using dynamic fractal analysis\",\"authors\":\"Yong Xu, Yuhui Quan, Haibin Ling, Hui Ji\",\"doi\":\"10.1109/ICCV.2011.6126372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we developed a novel tool called dynamic fractal analysis for dynamic texture (DT) classification, which not only provides a rich description of DT but also has strong robustness to environmental changes. The resulting dynamic fractal spectrum (DFS) for DT sequences consists of two components: One is the volumetric dynamic fractal spectrum component (V-DFS) that captures the stochastic self-similarities of DT sequences as 3D volume datasets; the other is the multi-slice dynamic fractal spectrum component (S-DFS) that encodes fractal structures of DT sequences on 2D slices along different views of the 3D volume. Various types of measures of DT sequences are collected in our approach to analyze DT sequences from different perspectives. The experimental evaluation is conducted on three widely used benchmark datasets. In all the experiments, our method demonstrated excellent performance in comparison with state-of-the-art approaches.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

在本文中,我们开发了一种新的动态分形分析工具用于动态纹理(DT)分类,该工具不仅提供了丰富的DT描述,而且对环境变化具有很强的鲁棒性。得到的DT序列动态分形谱(DFS)由两部分组成:一是体积动态分形谱(V-DFS),它捕捉DT序列作为三维体积数据集的随机自相似性;另一种是多片动态分形谱分量(S-DFS),它沿三维体的不同视图编码二维切片上DT序列的分形结构。我们的方法收集了DT序列的各种类型的度量,从不同的角度分析DT序列。在三个广泛使用的基准数据集上进行了实验评估。在所有的实验中,与最先进的方法相比,我们的方法表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic texture classification using dynamic fractal analysis
In this paper, we developed a novel tool called dynamic fractal analysis for dynamic texture (DT) classification, which not only provides a rich description of DT but also has strong robustness to environmental changes. The resulting dynamic fractal spectrum (DFS) for DT sequences consists of two components: One is the volumetric dynamic fractal spectrum component (V-DFS) that captures the stochastic self-similarities of DT sequences as 3D volume datasets; the other is the multi-slice dynamic fractal spectrum component (S-DFS) that encodes fractal structures of DT sequences on 2D slices along different views of the 3D volume. Various types of measures of DT sequences are collected in our approach to analyze DT sequences from different perspectives. The experimental evaluation is conducted on three widely used benchmark datasets. In all the experiments, our method demonstrated excellent performance in comparison with state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信