莱布尼兹代数中的对易子

A. Dzhumadil'daev, N. Ismailov, B. Sartayev
{"title":"莱布尼兹代数中的对易子","authors":"A. Dzhumadil'daev, N. Ismailov, B. Sartayev","doi":"10.1142/s0218196722500333","DOIUrl":null,"url":null,"abstract":"We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil’daev in [A. S. Dzhumadil’daev, [Formula: see text]-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415–440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"1 1","pages":"785-805"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the commutator in Leibniz algebras\",\"authors\":\"A. Dzhumadil'daev, N. Ismailov, B. Sartayev\",\"doi\":\"10.1142/s0218196722500333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil’daev in [A. S. Dzhumadil’daev, [Formula: see text]-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415–440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"1 1\",\"pages\":\"785-805\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

证明了对易子积可嵌入莱布尼茨代数的代数类不是变种。证明了对于反对子,每一个可交换元代数都可嵌入到莱布尼茨代数中。进一步,我们研究了在所有莱布尼兹代数中换位子满足的多项式恒等式。我们在[A]中推广了Dzhumadil 'daev的结果。S. Dzhumadil 'daev,[公式:见原文]-莱布尼茨代数,Serdica数学。J. 34(2)(2008) 415-440]。讨论7次以下的恒等式,并给出更高次恒等式的一个猜想。因此,我们得到了一个非spectex反交换代数的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the commutator in Leibniz algebras
We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil’daev in [A. S. Dzhumadil’daev, [Formula: see text]-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415–440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信