用盲法鉴定医学图像的完整性

S. Govarthini, M. Vadivel
{"title":"用盲法鉴定医学图像的完整性","authors":"S. Govarthini, M. Vadivel","doi":"10.1109/ICICES.2014.7034064","DOIUrl":null,"url":null,"abstract":"Digital images have been used in emerging applications, where their authenticity is quite importance. This proves to be problematic due to the widespread availability of digital image editing software. As a result, there is a great need for the development of reliable techniques for verifying the integrity of digital images. In this paper, we propose a novel technique based on blind forensic method to attest the image authenticity. This paper presents the efficient method of digital blind forensics within the medical imaging field with the objective to detect whether an image has been modified by some processing. It compares two image features: the histogram statistics of reorganized block-based discrete cosine transform coefficients, originally proposed for steganalysis purposes, and the histogram statistics of reorganized block-based Tchebichef moments. Both features serve as input of a set of support vector machine classifiers built in order to discriminate tampered images from original ones as well as to identify the nature of the global modification.","PeriodicalId":13713,"journal":{"name":"International Conference on Information Communication and Embedded Systems (ICICES2014)","volume":"135 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrity vérification of medical images using blind forensic method\",\"authors\":\"S. Govarthini, M. Vadivel\",\"doi\":\"10.1109/ICICES.2014.7034064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital images have been used in emerging applications, where their authenticity is quite importance. This proves to be problematic due to the widespread availability of digital image editing software. As a result, there is a great need for the development of reliable techniques for verifying the integrity of digital images. In this paper, we propose a novel technique based on blind forensic method to attest the image authenticity. This paper presents the efficient method of digital blind forensics within the medical imaging field with the objective to detect whether an image has been modified by some processing. It compares two image features: the histogram statistics of reorganized block-based discrete cosine transform coefficients, originally proposed for steganalysis purposes, and the histogram statistics of reorganized block-based Tchebichef moments. Both features serve as input of a set of support vector machine classifiers built in order to discriminate tampered images from original ones as well as to identify the nature of the global modification.\",\"PeriodicalId\":13713,\"journal\":{\"name\":\"International Conference on Information Communication and Embedded Systems (ICICES2014)\",\"volume\":\"135 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Communication and Embedded Systems (ICICES2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICES.2014.7034064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Communication and Embedded Systems (ICICES2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICES.2014.7034064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数字图像已被用于新兴应用,其真实性是相当重要的。由于数字图像编辑软件的广泛可用性,这证明是有问题的。因此,非常需要开发可靠的技术来验证数字图像的完整性。本文提出了一种基于盲法的图像真实性验证方法。本文提出了一种有效的医学成像领域数字盲取证方法,目的是检测图像是否经过某些处理而被修改。它比较了两种图像特征:基于重组块的离散余弦变换系数的直方图统计,最初是为了隐写分析而提出的,以及基于重组块的切比切夫矩的直方图统计。这两个特征都作为一组支持向量机分类器的输入,这些分类器是为了区分篡改图像和原始图像以及识别全局修改的性质而构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrity vérification of medical images using blind forensic method
Digital images have been used in emerging applications, where their authenticity is quite importance. This proves to be problematic due to the widespread availability of digital image editing software. As a result, there is a great need for the development of reliable techniques for verifying the integrity of digital images. In this paper, we propose a novel technique based on blind forensic method to attest the image authenticity. This paper presents the efficient method of digital blind forensics within the medical imaging field with the objective to detect whether an image has been modified by some processing. It compares two image features: the histogram statistics of reorganized block-based discrete cosine transform coefficients, originally proposed for steganalysis purposes, and the histogram statistics of reorganized block-based Tchebichef moments. Both features serve as input of a set of support vector machine classifiers built in order to discriminate tampered images from original ones as well as to identify the nature of the global modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信