N. Vijaykrishnan, S. Datta, G. Cauwenberghs, D. Chiarulli, S. Levitan, H. P. Wong
{"title":"视频分析使用超越CMOS器件","authors":"N. Vijaykrishnan, S. Datta, G. Cauwenberghs, D. Chiarulli, S. Levitan, H. P. Wong","doi":"10.7873/DATE.2014.357","DOIUrl":null,"url":null,"abstract":"The human vision system understands and interprets complex scenes for a variety of visual tasks in real-time while consuming less than 20 Watts of power. The holistic design of artificial vision systems that will approach and eventually exceed the capabilities of human vision systems is a grand challenge. The design of such a system needs advances in multiple disciplines. This paper focuses on advances needed in the computational fabric and provides an overview of a new-genre of architectures inspired by advances in both the understanding of the visual cortex and the emergence of devices with new mechanisms for state computations.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"39 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Video analytics using beyond CMOS devices\",\"authors\":\"N. Vijaykrishnan, S. Datta, G. Cauwenberghs, D. Chiarulli, S. Levitan, H. P. Wong\",\"doi\":\"10.7873/DATE.2014.357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human vision system understands and interprets complex scenes for a variety of visual tasks in real-time while consuming less than 20 Watts of power. The holistic design of artificial vision systems that will approach and eventually exceed the capabilities of human vision systems is a grand challenge. The design of such a system needs advances in multiple disciplines. This paper focuses on advances needed in the computational fabric and provides an overview of a new-genre of architectures inspired by advances in both the understanding of the visual cortex and the emergence of devices with new mechanisms for state computations.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"39 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The human vision system understands and interprets complex scenes for a variety of visual tasks in real-time while consuming less than 20 Watts of power. The holistic design of artificial vision systems that will approach and eventually exceed the capabilities of human vision systems is a grand challenge. The design of such a system needs advances in multiple disciplines. This paper focuses on advances needed in the computational fabric and provides an overview of a new-genre of architectures inspired by advances in both the understanding of the visual cortex and the emergence of devices with new mechanisms for state computations.