基于在线化学模拟环境(OCHEM)预测gemini阳离子表面活性剂临界胶束浓度的通用QSPR研究

Ely Setiawan, K. Wijaya, M. Mudasir
{"title":"基于在线化学模拟环境(OCHEM)预测gemini阳离子表面活性剂临界胶束浓度的通用QSPR研究","authors":"Ely Setiawan, K. Wijaya, M. Mudasir","doi":"10.1063/5.0051623","DOIUrl":null,"url":null,"abstract":"In this paper, a generic QSPR (quantitative structure-property relationship) model have been developed to investigate the relation between the critical micelle concentration (cmc) and the molecular structure of 231 gemini cationic surfactants with the various hydrophilic head group. The QSPR modeling were performed using the OCHEM (Online CHEmical Modeling environment), a web-based model development platform. The OCHEM platform provides several molecular descriptors calculation and machine learning methods as a tool to build QSPR models. Eight different software packages including Dragon v6, OEstate and ALogPS, CDK, ISIDA Fragment, ChemAxon, Inductive Descriptor, Mordred, and PyDescriptor are used to calculate molecular parameters of gemini cationic surfactants. Also, eight machine learning methods (MLRA, ASNN, kNN, LibSVM, FSMLR, DNN, RFR, and PLS) are used to develop QSPR models. A total of 64 QSPR models were generated with 6 top-ranked models. Based on the statistical coefficient of QSPR models, the model 5 which is constructed from combination of ASNN method and Mordred descriptors, provided the best QSPR models. The model 5 performed the highest predictive result with R2 = 0.95, q2 = 0.95, RMSE = 0.17, and MAE = 0.11. The model can be access on OCHEM website (https://ochem.eu/model/25147470) and can be used for prediction of cmc of new gemini cationic surfactants compound at the early steps of gemini cationic surfactants development.","PeriodicalId":6833,"journal":{"name":"4TH INTERNATIONAL SEMINAR ON CHEMISTRY","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generic QSPR study for predicting critical micelle concentration of gemini cationic surfactants using the online chemical modeling environment (OCHEM)\",\"authors\":\"Ely Setiawan, K. Wijaya, M. Mudasir\",\"doi\":\"10.1063/5.0051623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a generic QSPR (quantitative structure-property relationship) model have been developed to investigate the relation between the critical micelle concentration (cmc) and the molecular structure of 231 gemini cationic surfactants with the various hydrophilic head group. The QSPR modeling were performed using the OCHEM (Online CHEmical Modeling environment), a web-based model development platform. The OCHEM platform provides several molecular descriptors calculation and machine learning methods as a tool to build QSPR models. Eight different software packages including Dragon v6, OEstate and ALogPS, CDK, ISIDA Fragment, ChemAxon, Inductive Descriptor, Mordred, and PyDescriptor are used to calculate molecular parameters of gemini cationic surfactants. Also, eight machine learning methods (MLRA, ASNN, kNN, LibSVM, FSMLR, DNN, RFR, and PLS) are used to develop QSPR models. A total of 64 QSPR models were generated with 6 top-ranked models. Based on the statistical coefficient of QSPR models, the model 5 which is constructed from combination of ASNN method and Mordred descriptors, provided the best QSPR models. The model 5 performed the highest predictive result with R2 = 0.95, q2 = 0.95, RMSE = 0.17, and MAE = 0.11. The model can be access on OCHEM website (https://ochem.eu/model/25147470) and can be used for prediction of cmc of new gemini cationic surfactants compound at the early steps of gemini cationic surfactants development.\",\"PeriodicalId\":6833,\"journal\":{\"name\":\"4TH INTERNATIONAL SEMINAR ON CHEMISTRY\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4TH INTERNATIONAL SEMINAR ON CHEMISTRY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0051623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4TH INTERNATIONAL SEMINAR ON CHEMISTRY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0051623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了一个通用的定量构效关系(QSPR)模型,研究了231种具有不同亲水性头基的gemini阳离子表面活性剂的临界胶束浓度(cmc)与分子结构的关系。QSPR建模使用基于web的模型开发平台OCHEM(在线化学建模环境)进行。OCHEM平台提供了几种分子描述符计算和机器学习方法,作为构建QSPR模型的工具。使用Dragon v6、OEstate和ALogPS、CDK、ISIDA Fragment、ChemAxon、induceddescriptor、Mordred和PyDescriptor等8个不同的软件包计算gemini阳离子表面活性剂的分子参数。此外,还使用了8种机器学习方法(MLRA、ASNN、kNN、LibSVM、FSMLR、DNN、RFR和PLS)来开发QSPR模型。共生成64个QSPR模型,其中排名靠前的模型有6个。基于QSPR模型的统计系数,结合ASNN方法和Mordred描述符构建的模型5提供了最佳的QSPR模型。模型5的预测结果最高,R2 = 0.95, q2 = 0.95, RMSE = 0.17, MAE = 0.11。该模型可在OCHEM网站(https://ochem.eu/model/25147470)上获取,可用于gemini阳离子表面活性剂开发初期对新型gemini阳离子表面活性剂化合物cmc的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic QSPR study for predicting critical micelle concentration of gemini cationic surfactants using the online chemical modeling environment (OCHEM)
In this paper, a generic QSPR (quantitative structure-property relationship) model have been developed to investigate the relation between the critical micelle concentration (cmc) and the molecular structure of 231 gemini cationic surfactants with the various hydrophilic head group. The QSPR modeling were performed using the OCHEM (Online CHEmical Modeling environment), a web-based model development platform. The OCHEM platform provides several molecular descriptors calculation and machine learning methods as a tool to build QSPR models. Eight different software packages including Dragon v6, OEstate and ALogPS, CDK, ISIDA Fragment, ChemAxon, Inductive Descriptor, Mordred, and PyDescriptor are used to calculate molecular parameters of gemini cationic surfactants. Also, eight machine learning methods (MLRA, ASNN, kNN, LibSVM, FSMLR, DNN, RFR, and PLS) are used to develop QSPR models. A total of 64 QSPR models were generated with 6 top-ranked models. Based on the statistical coefficient of QSPR models, the model 5 which is constructed from combination of ASNN method and Mordred descriptors, provided the best QSPR models. The model 5 performed the highest predictive result with R2 = 0.95, q2 = 0.95, RMSE = 0.17, and MAE = 0.11. The model can be access on OCHEM website (https://ochem.eu/model/25147470) and can be used for prediction of cmc of new gemini cationic surfactants compound at the early steps of gemini cationic surfactants development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信