R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo
{"title":"软集理论在篮球中的应用","authors":"R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo","doi":"10.2478/auom-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"28 1","pages":"61 - 79"},"PeriodicalIF":0.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Soft Set Theory Applied to Hoops\",\"authors\":\"R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo\",\"doi\":\"10.2478/auom-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"28 1\",\"pages\":\"61 - 79\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.