软集理论在篮球中的应用

IF 0.8 4区 数学 Q2 MATHEMATICS
R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo
{"title":"软集理论在篮球中的应用","authors":"R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo","doi":"10.2478/auom-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"28 1","pages":"61 - 79"},"PeriodicalIF":0.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Soft Set Theory Applied to Hoops\",\"authors\":\"R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo\",\"doi\":\"10.2478/auom-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"28 1\",\"pages\":\"61 - 79\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文引入了软环的概念,研究了软环的一些性质。然后,我们建立了软箍家族的不同类型的交集和结合。我们在所有软箍的集合上定义了两个运算⊙和→并用这些运算证明了它既是一个箍又是一个Heyting代数。最后,我们在所有软箍集合上引入了一个同余关系,并研究了它的商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Set Theory Applied to Hoops
Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信