R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo
{"title":"软集理论在篮球中的应用","authors":"R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo","doi":"10.2478/auom-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Soft Set Theory Applied to Hoops\",\"authors\":\"R. Borzooei, E. Babaei, Y. Jun, M. Kologani, M. M. Takallo\",\"doi\":\"10.2478/auom-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract In this paper, we introduced the concept of a soft hoop and we investigated some of their properties. Then, we established different types of intersections and unions of the family of soft hoops. We defined two operations ⊙ and → on the set of all soft hoops and we proved that with these operations, it is a hoop and also is a Heyting algebra. Finally we introduced a congruence relation on the set of all soft hoops and we investigated the quotient of it.