一种用于复杂场景中人类动作识别的选择性时空兴趣点检测器

Bhaskar Chakraborty, M. B. Holte, T. Moeslund, Jordi Gonzàlez, F. X. Roca
{"title":"一种用于复杂场景中人类动作识别的选择性时空兴趣点检测器","authors":"Bhaskar Chakraborty, M. B. Holte, T. Moeslund, Jordi Gonzàlez, F. X. Roca","doi":"10.1109/ICCV.2011.6126443","DOIUrl":null,"url":null,"abstract":"Recent progress in the field of human action recognition points towards the use of Spatio-Temporal Interest Points (STIPs) for local descriptor-based recognition strategies. In this paper we present a new approach for STIP detection by applying surround suppression combined with local and temporal constraints. Our method is significantly different from existing STIP detectors and improves the performance by detecting more repeatable, stable and distinctive STIPs for human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-visual words (BoV) model of local N-jet features to build a vocabulary of visual-words. To this end, we introduce a novel vocabulary building strategy by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of experiments on existing benchmark datasets, and more challenging datasets of complex scenes, validate our approach and show state-of-the-art performance.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A selective spatio-temporal interest point detector for human action recognition in complex scenes\",\"authors\":\"Bhaskar Chakraborty, M. B. Holte, T. Moeslund, Jordi Gonzàlez, F. X. Roca\",\"doi\":\"10.1109/ICCV.2011.6126443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress in the field of human action recognition points towards the use of Spatio-Temporal Interest Points (STIPs) for local descriptor-based recognition strategies. In this paper we present a new approach for STIP detection by applying surround suppression combined with local and temporal constraints. Our method is significantly different from existing STIP detectors and improves the performance by detecting more repeatable, stable and distinctive STIPs for human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-visual words (BoV) model of local N-jet features to build a vocabulary of visual-words. To this end, we introduce a novel vocabulary building strategy by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of experiments on existing benchmark datasets, and more challenging datasets of complex scenes, validate our approach and show state-of-the-art performance.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

人类行为识别领域的最新进展是将时空兴趣点(STIPs)用于基于局部描述符的识别策略。在本文中,我们提出了一种新的STIP检测方法,该方法将环绕抑制与局部和时间约束相结合。我们的方法与现有的STIP检测器有很大的不同,通过检测更多可重复的、稳定的和独特的人类参与者的STIP来提高性能,同时抑制不需要的背景STIP。对于动作表示,我们使用局部N-jet特征的视觉词袋(BoV)模型来构建视觉词的词汇表。为此,我们将空间金字塔和词汇压缩技术相结合,提出了一种新的词汇构建策略,从而提高了性能和效率。特定于动作类的支持向量机(SVM)分类器被训练用于对人类动作进行分类。在现有的基准数据集和复杂场景的更具挑战性的数据集上进行了一组全面的实验,验证了我们的方法并显示了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A selective spatio-temporal interest point detector for human action recognition in complex scenes
Recent progress in the field of human action recognition points towards the use of Spatio-Temporal Interest Points (STIPs) for local descriptor-based recognition strategies. In this paper we present a new approach for STIP detection by applying surround suppression combined with local and temporal constraints. Our method is significantly different from existing STIP detectors and improves the performance by detecting more repeatable, stable and distinctive STIPs for human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-visual words (BoV) model of local N-jet features to build a vocabulary of visual-words. To this end, we introduce a novel vocabulary building strategy by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of experiments on existing benchmark datasets, and more challenging datasets of complex scenes, validate our approach and show state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信