什么是空间效应?纯连续统模型

A. Boldini, M. Porfiri
{"title":"什么是空间效应?纯连续统模型","authors":"A. Boldini, M. Porfiri","doi":"10.1117/12.2658452","DOIUrl":null,"url":null,"abstract":"In electrolyte solutions, the application of an external voltage elicits a series of complex microscopic phenomena. When there is no charge transfer between solution and electrodes (non-Faradaic processes), an extremely thin electric double layer is formed on each of the electrodes, screening the bulk of the solution from the external electric field. In the simplest double layer models, the volume of ions in the solution is neglected. For relatively small voltage values, one can easily reach values of concentrations in the double layers over the physical packing limit. To address this issue, steric effects associated with the finite volume of ions are introduced, toward limiting the maximum concentration in the double layers. These effects are often introduced at a microscopic scale, through modifications of the entropy of mixing. However, the macroscopic interpretation of these models remains elusive. Here, we propose a purely continuum model of steric effects in electrolyte solutions. We show that including steric effects at a microscopic scale is equivalent to requiring that each constituent of the solution is incompressible at a macroscopic level. Incidentally, the macroscopic model easily extends steric effects to multiple ions of different sizes, a challenging task for microscopic models. We highlight the consequences of our model on electrolyte solutions and ionic membranes. In particular, we show how our model constitutes a simple mathematical formulation for actuators with ionic liquid solvents. Our effort supports the creation of physics-based models of ionic actuators, facilitating their mathematical description.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"1 1","pages":"124820V - 124820V-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What are steric effects? A purely continuum model\",\"authors\":\"A. Boldini, M. Porfiri\",\"doi\":\"10.1117/12.2658452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In electrolyte solutions, the application of an external voltage elicits a series of complex microscopic phenomena. When there is no charge transfer between solution and electrodes (non-Faradaic processes), an extremely thin electric double layer is formed on each of the electrodes, screening the bulk of the solution from the external electric field. In the simplest double layer models, the volume of ions in the solution is neglected. For relatively small voltage values, one can easily reach values of concentrations in the double layers over the physical packing limit. To address this issue, steric effects associated with the finite volume of ions are introduced, toward limiting the maximum concentration in the double layers. These effects are often introduced at a microscopic scale, through modifications of the entropy of mixing. However, the macroscopic interpretation of these models remains elusive. Here, we propose a purely continuum model of steric effects in electrolyte solutions. We show that including steric effects at a microscopic scale is equivalent to requiring that each constituent of the solution is incompressible at a macroscopic level. Incidentally, the macroscopic model easily extends steric effects to multiple ions of different sizes, a challenging task for microscopic models. We highlight the consequences of our model on electrolyte solutions and ionic membranes. In particular, we show how our model constitutes a simple mathematical formulation for actuators with ionic liquid solvents. Our effort supports the creation of physics-based models of ionic actuators, facilitating their mathematical description.\",\"PeriodicalId\":89272,\"journal\":{\"name\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"volume\":\"1 1\",\"pages\":\"124820V - 124820V-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在电解质溶液中,外加电压会引起一系列复杂的微观现象。当溶液和电极之间没有电荷转移(非法拉第过程)时,在每个电极上形成极薄的双电层,将大部分溶液从外部电场中屏蔽掉。在最简单的双层模型中,溶液中离子的体积被忽略。对于相对较小的电压值,可以很容易地达到超过物理包装极限的双层浓度值。为了解决这个问题,引入了与有限体积离子相关的空间效应,以限制双层中的最大浓度。这些效应通常是在微观尺度上通过混合熵的改变而产生的。然而,这些模型的宏观解释仍然难以捉摸。在这里,我们提出了电解质溶液中立体效应的一个纯连续体模型。我们表明,在微观尺度上包括空间效应相当于要求溶液的每个成分在宏观水平上是不可压缩的。顺便说一句,宏观模型很容易将空间效应扩展到不同大小的多个离子,这对微观模型来说是一个挑战。我们强调了我们的模型对电解质溶液和离子膜的影响。特别地,我们展示了我们的模型如何构成具有离子液体溶剂的致动器的简单数学公式。我们的努力支持创建基于物理的离子致动器模型,促进它们的数学描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What are steric effects? A purely continuum model
In electrolyte solutions, the application of an external voltage elicits a series of complex microscopic phenomena. When there is no charge transfer between solution and electrodes (non-Faradaic processes), an extremely thin electric double layer is formed on each of the electrodes, screening the bulk of the solution from the external electric field. In the simplest double layer models, the volume of ions in the solution is neglected. For relatively small voltage values, one can easily reach values of concentrations in the double layers over the physical packing limit. To address this issue, steric effects associated with the finite volume of ions are introduced, toward limiting the maximum concentration in the double layers. These effects are often introduced at a microscopic scale, through modifications of the entropy of mixing. However, the macroscopic interpretation of these models remains elusive. Here, we propose a purely continuum model of steric effects in electrolyte solutions. We show that including steric effects at a microscopic scale is equivalent to requiring that each constituent of the solution is incompressible at a macroscopic level. Incidentally, the macroscopic model easily extends steric effects to multiple ions of different sizes, a challenging task for microscopic models. We highlight the consequences of our model on electrolyte solutions and ionic membranes. In particular, we show how our model constitutes a simple mathematical formulation for actuators with ionic liquid solvents. Our effort supports the creation of physics-based models of ionic actuators, facilitating their mathematical description.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信