基于二次预搜索的快速分形编码算法

Ming Zhao, Ling Bai, Hui Tang, Shaofa Zhou
{"title":"基于二次预搜索的快速分形编码算法","authors":"Ming Zhao, Ling Bai, Hui Tang, Shaofa Zhou","doi":"10.1109/ICIC.2011.64","DOIUrl":null,"url":null,"abstract":"A fast fractal coding algorithm is proposed in this paper. This algorithm is based on Jacquin's full search algorithm. When matching range-domain blocks, by utilizing the variance of the image block and the relativity between the image blocks, this algorithm performs twice pre-searching, thus avoiding vast matching computation and reducing the coding time greatly. Experimental results show that the coding time can be reduced approximately by 80% while the PSNR of the most reconstructed images is increased by this algorithm.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Fractal Coding Algorithm Based on Twice Pre-searching\",\"authors\":\"Ming Zhao, Ling Bai, Hui Tang, Shaofa Zhou\",\"doi\":\"10.1109/ICIC.2011.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast fractal coding algorithm is proposed in this paper. This algorithm is based on Jacquin's full search algorithm. When matching range-domain blocks, by utilizing the variance of the image block and the relativity between the image blocks, this algorithm performs twice pre-searching, thus avoiding vast matching computation and reducing the coding time greatly. Experimental results show that the coding time can be reduced approximately by 80% while the PSNR of the most reconstructed images is increased by this algorithm.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种快速分形编码算法。该算法基于Jacquin的全搜索算法。在匹配距离域块时,该算法利用图像块的方差和图像块之间的相关性进行两次预搜索,避免了大量的匹配计算,大大缩短了编码时间。实验结果表明,该算法可将编码时间缩短约80%,同时提高重构图像的PSNR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Fractal Coding Algorithm Based on Twice Pre-searching
A fast fractal coding algorithm is proposed in this paper. This algorithm is based on Jacquin's full search algorithm. When matching range-domain blocks, by utilizing the variance of the image block and the relativity between the image blocks, this algorithm performs twice pre-searching, thus avoiding vast matching computation and reducing the coding time greatly. Experimental results show that the coding time can be reduced approximately by 80% while the PSNR of the most reconstructed images is increased by this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信