P. C. Fragile, K. Chatterjee, A. Ingram, M. Middleton
{"title":"发光、坚硬的状态不可能是MAD","authors":"P. C. Fragile, K. Chatterjee, A. Ingram, M. Middleton","doi":"10.1093/mnrasl/slad099","DOIUrl":null,"url":null,"abstract":"\n We present a straightforward argument for why the luminous, hard state of black hole X-ray binaries (BHXRBs) cannot always be associated with a magnetically arrested accretion disc (MAD). It relies on three core premises: 1) that the type-C quasi-periodic oscillation (QPO) is best explained by Lense-Thirring (LT) precession of a tilted, inner, hot flow; 2) that observed optical and infrared (IR) QPOs with the same or lower frequency as the type-C QPO suggest the jet, too, must precess in these systems; and 3) that numerical simulations of MADs show that their strong magnetic fields promote alignment of the disc with the black hole and, thereby, suppress LT precession. If all three premises hold true, then, at least whenever the optical and IR QPOs are observed alongside the type-C QPO, these systems cannot be in the MAD state. Extending the argument further, if the type-C QPO is always associated with LT precession, then it would rule out MADs anytime this timing feature is seen, which covers nearly all BHXRBs when they are in the luminous, hard and hard-intermediate states.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The luminous, hard state can’t be MAD\",\"authors\":\"P. C. Fragile, K. Chatterjee, A. Ingram, M. Middleton\",\"doi\":\"10.1093/mnrasl/slad099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a straightforward argument for why the luminous, hard state of black hole X-ray binaries (BHXRBs) cannot always be associated with a magnetically arrested accretion disc (MAD). It relies on three core premises: 1) that the type-C quasi-periodic oscillation (QPO) is best explained by Lense-Thirring (LT) precession of a tilted, inner, hot flow; 2) that observed optical and infrared (IR) QPOs with the same or lower frequency as the type-C QPO suggest the jet, too, must precess in these systems; and 3) that numerical simulations of MADs show that their strong magnetic fields promote alignment of the disc with the black hole and, thereby, suppress LT precession. If all three premises hold true, then, at least whenever the optical and IR QPOs are observed alongside the type-C QPO, these systems cannot be in the MAD state. Extending the argument further, if the type-C QPO is always associated with LT precession, then it would rule out MADs anytime this timing feature is seen, which covers nearly all BHXRBs when they are in the luminous, hard and hard-intermediate states.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
We present a straightforward argument for why the luminous, hard state of black hole X-ray binaries (BHXRBs) cannot always be associated with a magnetically arrested accretion disc (MAD). It relies on three core premises: 1) that the type-C quasi-periodic oscillation (QPO) is best explained by Lense-Thirring (LT) precession of a tilted, inner, hot flow; 2) that observed optical and infrared (IR) QPOs with the same or lower frequency as the type-C QPO suggest the jet, too, must precess in these systems; and 3) that numerical simulations of MADs show that their strong magnetic fields promote alignment of the disc with the black hole and, thereby, suppress LT precession. If all three premises hold true, then, at least whenever the optical and IR QPOs are observed alongside the type-C QPO, these systems cannot be in the MAD state. Extending the argument further, if the type-C QPO is always associated with LT precession, then it would rule out MADs anytime this timing feature is seen, which covers nearly all BHXRBs when they are in the luminous, hard and hard-intermediate states.
期刊介绍:
For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.