引力场中粒子的运动学和动力学

Dubrovskyi I
{"title":"引力场中粒子的运动学和动力学","authors":"Dubrovskyi I","doi":"10.34257/gjsfravol22is2pg19","DOIUrl":null,"url":null,"abstract":"It is accepted that three-dimensional physical space is a hypersurface with a Riemannian metric in four-dimensional space. The metric tensor of this three-dimensional space is defined by Einstein's equations. Another coordinate of four-dimensional space is time. In this space, the equations of the world line of a particle with a mass m are defined under certain initial conditions: the starting point of the space and the vector of the particle's initial velocity. This approach removes all the problems and contradictions noted in the monograph [1], and the resulting equations adequately describe, for example, the curvilinear motion of planets without energy change.","PeriodicalId":12547,"journal":{"name":"Global Journal of Science Frontier Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics and Dynamics of a Particle in Gravitation Field\",\"authors\":\"Dubrovskyi I\",\"doi\":\"10.34257/gjsfravol22is2pg19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is accepted that three-dimensional physical space is a hypersurface with a Riemannian metric in four-dimensional space. The metric tensor of this three-dimensional space is defined by Einstein's equations. Another coordinate of four-dimensional space is time. In this space, the equations of the world line of a particle with a mass m are defined under certain initial conditions: the starting point of the space and the vector of the particle's initial velocity. This approach removes all the problems and contradictions noted in the monograph [1], and the resulting equations adequately describe, for example, the curvilinear motion of planets without energy change.\",\"PeriodicalId\":12547,\"journal\":{\"name\":\"Global Journal of Science Frontier Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Science Frontier Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/gjsfravol22is2pg19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjsfravol22is2pg19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维物理空间是四维空间中具有黎曼度量的超曲面。这个三维空间的度规张量是由爱因斯坦方程定义的。四维空间的另一个坐标是时间。在这个空间中,质量为m的粒子的世界线方程是在一定的初始条件下定义的:空间的起点和粒子的初始速度矢量。这种方法消除了专著[1]中提到的所有问题和矛盾,并且得到的方程充分地描述了行星在没有能量变化的情况下的曲线运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematics and Dynamics of a Particle in Gravitation Field
It is accepted that three-dimensional physical space is a hypersurface with a Riemannian metric in four-dimensional space. The metric tensor of this three-dimensional space is defined by Einstein's equations. Another coordinate of four-dimensional space is time. In this space, the equations of the world line of a particle with a mass m are defined under certain initial conditions: the starting point of the space and the vector of the particle's initial velocity. This approach removes all the problems and contradictions noted in the monograph [1], and the resulting equations adequately describe, for example, the curvilinear motion of planets without energy change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信