{"title":"以铬取代的锂基NASICON结构陶瓷电解质的电学性质","authors":"N. A. Mustaffa, N. S. Mohamed, . .","doi":"10.14419/ijet.v7i4.14.27788","DOIUrl":null,"url":null,"abstract":"Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration, mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system. Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes. ","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Properties of Li-based NASICON Structured Ceramic Electrolytes Substituted With Chromium\",\"authors\":\"N. A. Mustaffa, N. S. Mohamed, . .\",\"doi\":\"10.14419/ijet.v7i4.14.27788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration, mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system. Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes. \",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijet.v7i4.14.27788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijet.v7i4.14.27788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
采用电阻抗谱法研究了Li离子导电0 < x < 1的Li1+xCrxSn2-x(PO4)3陶瓷电解质在1 Hz ~ 10 MHz范围内的室温电学特性。阻抗分析表明,体积电导率和晶界电导率随x的增加而增加,达到x = 0.7。室温下,Li1.7Cr0.7Sn1.3(PO4)3体系的体积电导率和晶界电导率分别为6.52 ×10-6 S cm-1和1.62 ×10-6 S cm-1。通过拟合交流电导率谱,计算了载流子浓度、移动离子浓度、离子跳变速率和离子迁移率。随着铬的取代,化合物的离子跳跃率和离子迁移率增加,这是由于系统中额外的间隙Li+离子。此外,根据迁移数测量,x = 0.7的最高导电性样品的电子导电性可以忽略不计。这些结果表明,本工作获得的Li1+xCrxSn2-x(PO4)3电解质可以被认为是未来固态电解质的候选者。
Electrical Properties of Li-based NASICON Structured Ceramic Electrolytes Substituted With Chromium
Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration, mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system. Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes.