以铬取代的锂基NASICON结构陶瓷电解质的电学性质

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
N. A. Mustaffa, N. S. Mohamed, . .
{"title":"以铬取代的锂基NASICON结构陶瓷电解质的电学性质","authors":"N. A. Mustaffa, N. S. Mohamed, . .","doi":"10.14419/ijet.v7i4.14.27788","DOIUrl":null,"url":null,"abstract":"Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration,   mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system.  Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes.  ","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Properties of Li-based NASICON Structured Ceramic Electrolytes Substituted With Chromium\",\"authors\":\"N. A. Mustaffa, N. S. Mohamed, . .\",\"doi\":\"10.14419/ijet.v7i4.14.27788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration,   mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system.  Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes.  \",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijet.v7i4.14.27788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijet.v7i4.14.27788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用电阻抗谱法研究了Li离子导电0 < x < 1的Li1+xCrxSn2-x(PO4)3陶瓷电解质在1 Hz ~ 10 MHz范围内的室温电学特性。阻抗分析表明,体积电导率和晶界电导率随x的增加而增加,达到x = 0.7。室温下,Li1.7Cr0.7Sn1.3(PO4)3体系的体积电导率和晶界电导率分别为6.52 ×10-6 S cm-1和1.62 ×10-6 S cm-1。通过拟合交流电导率谱,计算了载流子浓度、移动离子浓度、离子跳变速率和离子迁移率。随着铬的取代,化合物的离子跳跃率和离子迁移率增加,这是由于系统中额外的间隙Li+离子。此外,根据迁移数测量,x = 0.7的最高导电性样品的电子导电性可以忽略不计。这些结果表明,本工作获得的Li1+xCrxSn2-x(PO4)3电解质可以被认为是未来固态电解质的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Properties of Li-based NASICON Structured Ceramic Electrolytes Substituted With Chromium
Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration,   mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system.  Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信