{"title":"基于agent建模的COVID-19疫情控制研究","authors":"Shaoping Xiao, Ruicheng Liu","doi":"10.25088/complexsystems.30.3.297","DOIUrl":null,"url":null,"abstract":"An agent-based model was developed to study outbreaks and outbreak control for COVID-19, mainly in urban communities. Rules for people’s interactions and virus infectiousness were derived based on previous sociology studies and recently published data-driven analyses of COVID-19 epidemics. The calculated basic reproduction number of epidemics from the developed model coincided with reported values. There were three control measures considered in this paper: social distancing, self-quarantine and community quarantine. Each control measure was assessed individually at first. Later on, an artificial neural network was used to study the effects of different combinations of control measures. To help quantify the impacts of self-quarantine and community quarantine on outbreak control, both were scaled respectively. The results showed that self-quarantine was more effective than the others, but any individual control measure was ineffective in controlling outbreaks in urban communities. The results also showed that a high level of self-quarantine and general community quarantine, assisted with social distancing, would be recommended for outbreak control.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Studies of COVID-19 Outbreak Control Using Agent-Based Modeling\",\"authors\":\"Shaoping Xiao, Ruicheng Liu\",\"doi\":\"10.25088/complexsystems.30.3.297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An agent-based model was developed to study outbreaks and outbreak control for COVID-19, mainly in urban communities. Rules for people’s interactions and virus infectiousness were derived based on previous sociology studies and recently published data-driven analyses of COVID-19 epidemics. The calculated basic reproduction number of epidemics from the developed model coincided with reported values. There were three control measures considered in this paper: social distancing, self-quarantine and community quarantine. Each control measure was assessed individually at first. Later on, an artificial neural network was used to study the effects of different combinations of control measures. To help quantify the impacts of self-quarantine and community quarantine on outbreak control, both were scaled respectively. The results showed that self-quarantine was more effective than the others, but any individual control measure was ineffective in controlling outbreaks in urban communities. The results also showed that a high level of self-quarantine and general community quarantine, assisted with social distancing, would be recommended for outbreak control.\",\"PeriodicalId\":50871,\"journal\":{\"name\":\"Advances in Complex Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.30.3.297\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25088/complexsystems.30.3.297","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Studies of COVID-19 Outbreak Control Using Agent-Based Modeling
An agent-based model was developed to study outbreaks and outbreak control for COVID-19, mainly in urban communities. Rules for people’s interactions and virus infectiousness were derived based on previous sociology studies and recently published data-driven analyses of COVID-19 epidemics. The calculated basic reproduction number of epidemics from the developed model coincided with reported values. There were three control measures considered in this paper: social distancing, self-quarantine and community quarantine. Each control measure was assessed individually at first. Later on, an artificial neural network was used to study the effects of different combinations of control measures. To help quantify the impacts of self-quarantine and community quarantine on outbreak control, both were scaled respectively. The results showed that self-quarantine was more effective than the others, but any individual control measure was ineffective in controlling outbreaks in urban communities. The results also showed that a high level of self-quarantine and general community quarantine, assisted with social distancing, would be recommended for outbreak control.
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.