基于粒子群优化的二阶拉曼光纤放大器研究

Q3 Engineering
Gong Jiamin, Zhang Chen, Hao Qianwen, Z. Lihong, Wang Jie
{"title":"基于粒子群优化的二阶拉曼光纤放大器研究","authors":"Gong Jiamin, Zhang Chen, Hao Qianwen, Z. Lihong, Wang Jie","doi":"10.12086/OEE.2020.190747","DOIUrl":null,"url":null,"abstract":"In order to further improve the performance index of second-order Raman fiber amplifier, the main parameters of second-order RFA were analyzed. First, a structural model that can be controlled by optical switches and switched between two modes of traditional second-order and traditional first-order RFA is designed. It is proved through simulation that second-order RFA can increase the system gain and improve noise performance. The gain performance of first-order RFA is optimized. The optimization goal is to reduce the flatness. The particle swarm optimization algorithm is used to optimize the configuration of the wavelength and power of the pump light. After further structural improvement, a second-order RFA with a gain of 24.50 dB and a gain flatness of 0.98 dB were achieved in a 100 nm bandwidth. These results provide a reference for the design of second-order RFA with better performance in the future.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on second-order Raman fiber amplifier based on particle swarm optimization\",\"authors\":\"Gong Jiamin, Zhang Chen, Hao Qianwen, Z. Lihong, Wang Jie\",\"doi\":\"10.12086/OEE.2020.190747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to further improve the performance index of second-order Raman fiber amplifier, the main parameters of second-order RFA were analyzed. First, a structural model that can be controlled by optical switches and switched between two modes of traditional second-order and traditional first-order RFA is designed. It is proved through simulation that second-order RFA can increase the system gain and improve noise performance. The gain performance of first-order RFA is optimized. The optimization goal is to reduce the flatness. The particle swarm optimization algorithm is used to optimize the configuration of the wavelength and power of the pump light. After further structural improvement, a second-order RFA with a gain of 24.50 dB and a gain flatness of 0.98 dB were achieved in a 100 nm bandwidth. These results provide a reference for the design of second-order RFA with better performance in the future.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.190747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高二阶拉曼光纤放大器的性能指标,对二阶拉曼光纤放大器的主要参数进行了分析。首先,设计了一种可由光开关控制并在传统二阶和传统一阶RFA两种模式之间切换的结构模型。仿真结果表明,二阶RFA可以提高系统增益,改善噪声性能。优化了一阶射频放大器的增益性能。优化的目标是降低平面度。采用粒子群优化算法对泵浦光的波长和功率进行优化配置。经过进一步的结构改进,在100 nm带宽下获得了增益为24.50 dB、增益平坦度为0.98 dB的二阶RFA。这些结果为今后设计性能更好的二阶RFA提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on second-order Raman fiber amplifier based on particle swarm optimization
In order to further improve the performance index of second-order Raman fiber amplifier, the main parameters of second-order RFA were analyzed. First, a structural model that can be controlled by optical switches and switched between two modes of traditional second-order and traditional first-order RFA is designed. It is proved through simulation that second-order RFA can increase the system gain and improve noise performance. The gain performance of first-order RFA is optimized. The optimization goal is to reduce the flatness. The particle swarm optimization algorithm is used to optimize the configuration of the wavelength and power of the pump light. After further structural improvement, a second-order RFA with a gain of 24.50 dB and a gain flatness of 0.98 dB were achieved in a 100 nm bandwidth. These results provide a reference for the design of second-order RFA with better performance in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信