基于开放卫星影像的高变场识别

J. Jeppesen, R. Jacobsen, R. Jørgensen, Anders Halberg, T. Toftegaard
{"title":"基于开放卫星影像的高变场识别","authors":"J. Jeppesen, R. Jacobsen, R. Jørgensen, Anders Halberg, T. Toftegaard","doi":"10.1017/S2040470017000693","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective. The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update of satellite imagery, hence coupling the geospatial data analysis to direct improvements for the farmers, contractors, and consultants.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"176 1","pages":"388-393"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Identification of High-Variation Fields based on Open Satellite Imagery\",\"authors\":\"J. Jeppesen, R. Jacobsen, R. Jørgensen, Anders Halberg, T. Toftegaard\",\"doi\":\"10.1017/S2040470017000693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective. The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update of satellite imagery, hence coupling the geospatial data analysis to direct improvements for the farmers, contractors, and consultants.\",\"PeriodicalId\":7228,\"journal\":{\"name\":\"Advances in Animal Biosciences\",\"volume\":\"176 1\",\"pages\":\"388-393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Animal Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2040470017000693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Animal Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2040470017000693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种简单的方法来分类领域在区域一级,相对于领域内的变化。它旨在从经济和环境的角度确定应用精准农业实践的潜在效益最高的领域。分类基于Sentinel-2卫星图像的植被指数。以7678块冬小麦地为例,采用开放数据和开源软件对卫星影像进行分析。此外,该方法可以在每次更新卫星图像时自动提供分类,从而将地理空间数据分析与农民、承包商和顾问的直接改进相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of High-Variation Fields based on Open Satellite Imagery
This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective. The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update of satellite imagery, hence coupling the geospatial data analysis to direct improvements for the farmers, contractors, and consultants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信