高维形式循环空间

IF 1.3 1区 数学 Q1 MATHEMATICS
Benjamin Hennion
{"title":"高维形式循环空间","authors":"Benjamin Hennion","doi":"10.24033/asens.2329","DOIUrl":null,"url":null,"abstract":"If $M$ is a symplectic manifold then the space of smooth loops $\\mathrm C^{\\infty}(\\mathrm S^1,M)$ inherits of a quasi-symplectic form. We will focus in this article on an algebraic analogue of that result. In 2004, Kapranov and Vasserot introduced and studied the formal loop space of a scheme $X$. \nWe generalize their construction to higher dimensional loops. To any scheme $X$ -- not necessarily smooth -- we associate $\\mathcal L^d(X)$, the space of loops of dimension $d$. We prove it has a structure of (derived) Tate scheme -- ie its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality. We also define the bubble space $\\mathcal B^d(X)$, a variation of the loop space. We prove that $\\mathcal B^d(X)$ is endowed with a natural symplectic form as soon as $X$ has one (in the sense of [PTVV]). \nThroughout this paper, we will use the tools of $(\\infty,1)$-categories and symplectic derived algebraic geometry.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"39 1","pages":"609-663"},"PeriodicalIF":1.3000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Higher dimensional formal loop spaces\",\"authors\":\"Benjamin Hennion\",\"doi\":\"10.24033/asens.2329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $M$ is a symplectic manifold then the space of smooth loops $\\\\mathrm C^{\\\\infty}(\\\\mathrm S^1,M)$ inherits of a quasi-symplectic form. We will focus in this article on an algebraic analogue of that result. In 2004, Kapranov and Vasserot introduced and studied the formal loop space of a scheme $X$. \\nWe generalize their construction to higher dimensional loops. To any scheme $X$ -- not necessarily smooth -- we associate $\\\\mathcal L^d(X)$, the space of loops of dimension $d$. We prove it has a structure of (derived) Tate scheme -- ie its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality. We also define the bubble space $\\\\mathcal B^d(X)$, a variation of the loop space. We prove that $\\\\mathcal B^d(X)$ is endowed with a natural symplectic form as soon as $X$ has one (in the sense of [PTVV]). \\nThroughout this paper, we will use the tools of $(\\\\infty,1)$-categories and symplectic derived algebraic geometry.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"39 1\",\"pages\":\"609-663\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/asens.2329\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/asens.2329","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

如果$M$是辛流形,则光滑环路空间$\mathrm C^{\infty}(\mathrm S^1,M)$继承了拟辛形式。在本文中,我们将重点讨论该结果的代数模拟。2004年,Kapranov和Vasserot引入并研究了一个方案$X$的形式循环空间。我们把它们的构造推广到高维循环。对于任何方案$X$——不一定是光滑的——我们联系$\mathcal L^d(X)$,维度为$d$的循环空间。我们证明了它具有(派生)Tate格式的结构——即它的正切是一个Tate模:它是无限维的,但在对偶性方面表现得足够好。我们还定义了气泡空间$\mathcal B^d(X)$,它是循环空间的一种变体。只要$X$具有自然辛形式(在[ptv]意义上),我们就证明$\mathcal B^d(X)$也具有自然辛形式。在整个论文中,我们将使用$(\infty,1)$ -范畴和辛派生代数几何的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher dimensional formal loop spaces
If $M$ is a symplectic manifold then the space of smooth loops $\mathrm C^{\infty}(\mathrm S^1,M)$ inherits of a quasi-symplectic form. We will focus in this article on an algebraic analogue of that result. In 2004, Kapranov and Vasserot introduced and studied the formal loop space of a scheme $X$. We generalize their construction to higher dimensional loops. To any scheme $X$ -- not necessarily smooth -- we associate $\mathcal L^d(X)$, the space of loops of dimension $d$. We prove it has a structure of (derived) Tate scheme -- ie its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality. We also define the bubble space $\mathcal B^d(X)$, a variation of the loop space. We prove that $\mathcal B^d(X)$ is endowed with a natural symplectic form as soon as $X$ has one (in the sense of [PTVV]). Throughout this paper, we will use the tools of $(\infty,1)$-categories and symplectic derived algebraic geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信