在操作动作上使用基于物理的启发式的任务规划

Akbari Aliakbar, Muhayyuddin, J. Rosell
{"title":"在操作动作上使用基于物理的启发式的任务规划","authors":"Akbari Aliakbar, Muhayyuddin, J. Rosell","doi":"10.1109/ETFA.2016.7733599","DOIUrl":null,"url":null,"abstract":"In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Task planning using physics-based heuristics on manipulation actions\",\"authors\":\"Akbari Aliakbar, Muhayyuddin, J. Rosell\",\"doi\":\"10.1109/ETFA.2016.7733599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.\",\"PeriodicalId\":6483,\"journal\":{\"name\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2016.7733599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

为了解决移动操作问题,通常需要将任务和运动规划有效地结合起来。此外,最近已考虑到结合基于物理的资料,以便以更现实的方式规划任务。在本文中,提出了一个任务和运动规划框架,该框架基于物理知识指导下的快速前进任务规划器的改进版本。该建议使用操作知识对符号文字进行推理(离线和在线模式),并考虑几何信息,以便在评估启发式成本的同时评估行动的适用性和可行性。它可以有效地搜索状态空间,并获得低成本的物理可行方案。该方案已被实现,并以一个由移动机器人和一些固定可操作对象组成的操作问题为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task planning using physics-based heuristics on manipulation actions
In order to solve mobile manipulation problems, the efficient combination of task and motion planning is usually required. Moreover, the incorporation of physics-based information has recently been taken into account in order to plan the tasks in a more realistic way. In the present paper, a task and motion planning framework is proposed based on a modified version of the Fast-Forward task planner that is guided by physics-based knowledge. The proposal uses manipulation knowledge for reasoning on symbolic literals (both in offline and online modes) taking into account geometric information in order to evaluate the applicability as well as feasibility of actions while evaluating the heuristic cost. It results in an efficient search of the state space and in the obtention of low-cost physically-feasible plans. The proposal has been implemented and is illustrated with a manipulation problem consisting of a mobile robot and some fixed and manipulatable objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信