一种生殖支原体流行病学模型的定性分析

IF 0.9 Q3 MATHEMATICS, APPLIED
Ricardo Almeida, M. Teresa T. Monteiro, Ezio Venturino, Luís Machado
{"title":"一种生殖支原体流行病学模型的定性分析","authors":"Ricardo Almeida,&nbsp;M. Teresa T. Monteiro,&nbsp;Ezio Venturino,&nbsp;Luís Machado","doi":"10.1002/cmm4.1199","DOIUrl":null,"url":null,"abstract":"<p>The objective of the article is to present a qualitative analysis of a mathematical model for the spread of a sexually transmitted infection caused by <i>Mycoplasma genitalium</i>. Recent investigations revealed that this pathogen is becoming resistant to the use of macrolides and can turn into a superbug in the next few years. We present an epidemiological model to describe the spread of the disease. The equilibrium points are computed, and their local and global stability are studied. In order to make the mathematical problem more realistic, we propose two different optimal control problems that establish a balance between the number of infected individuals and the use of macrolides. Several numerical illustrations regarding the solutions of the proposed problems will be provided.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1199","citationCount":"1","resultStr":"{\"title\":\"A qualitative analysis of a Mycoplasma genitalium epidemiological\\n model\",\"authors\":\"Ricardo Almeida,&nbsp;M. Teresa T. Monteiro,&nbsp;Ezio Venturino,&nbsp;Luís Machado\",\"doi\":\"10.1002/cmm4.1199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of the article is to present a qualitative analysis of a mathematical model for the spread of a sexually transmitted infection caused by <i>Mycoplasma genitalium</i>. Recent investigations revealed that this pathogen is becoming resistant to the use of macrolides and can turn into a superbug in the next few years. We present an epidemiological model to describe the spread of the disease. The equilibrium points are computed, and their local and global stability are studied. In order to make the mathematical problem more realistic, we propose two different optimal control problems that establish a balance between the number of infected individuals and the use of macrolides. Several numerical illustrations regarding the solutions of the proposed problems will be provided.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1199\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是提出一个定性分析的数学模型的传播性传播感染引起的支原体生殖器。最近的调查显示,这种病原体正在对大环内酯类药物产生耐药性,并可能在未来几年内变成一种超级细菌。我们提出了一个流行病学模型来描述这种疾病的传播。计算了平衡点,研究了平衡点的局部稳定性和全局稳定性。为了使数学问题更加现实,我们提出了两个不同的最优控制问题,在感染个体数量和大环内酯类药物的使用之间建立平衡。将提供关于所提出问题的解决方案的几个数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A qualitative analysis of a Mycoplasma genitalium epidemiological model

The objective of the article is to present a qualitative analysis of a mathematical model for the spread of a sexually transmitted infection caused by Mycoplasma genitalium. Recent investigations revealed that this pathogen is becoming resistant to the use of macrolides and can turn into a superbug in the next few years. We present an epidemiological model to describe the spread of the disease. The equilibrium points are computed, and their local and global stability are studied. In order to make the mathematical problem more realistic, we propose two different optimal control problems that establish a balance between the number of infected individuals and the use of macrolides. Several numerical illustrations regarding the solutions of the proposed problems will be provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信