方形晶格上k-mers的慢动力学

C. Fusco, P. Gallo, A. Petri, M. Rovere
{"title":"方形晶格上k-mers的慢动力学","authors":"C. Fusco, P. Gallo, A. Petri, M. Rovere","doi":"10.1080/13642810208223125","DOIUrl":null,"url":null,"abstract":"Abstract We have performed extensive simulations of random sequential adsorption and diffusion of k-mers up to k = 5 on a square lattice with particular attention to the case k = 2. We observe that, for k = 2, 3, complete coverage of the lattice is never reached, because of the existence of frozen configurations that prevent isolated vacancies in the lattice from joining and we argue that complete coverage is never attained for any value of k. In particular the long-time behaviour of the coverage is not mean field and non-analytic, with t −1/2 as the leading term. Morover different values of the diffusion probability and deposition rate lead to different final values of the coverage. We also give a brief account of the vacancy population dynamics.","PeriodicalId":20016,"journal":{"name":"Philosophical Magazine Part B","volume":"3 1","pages":"375 - 381"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Slow dynamics of k-mers on a square lattice\",\"authors\":\"C. Fusco, P. Gallo, A. Petri, M. Rovere\",\"doi\":\"10.1080/13642810208223125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We have performed extensive simulations of random sequential adsorption and diffusion of k-mers up to k = 5 on a square lattice with particular attention to the case k = 2. We observe that, for k = 2, 3, complete coverage of the lattice is never reached, because of the existence of frozen configurations that prevent isolated vacancies in the lattice from joining and we argue that complete coverage is never attained for any value of k. In particular the long-time behaviour of the coverage is not mean field and non-analytic, with t −1/2 as the leading term. Morover different values of the diffusion probability and deposition rate lead to different final values of the coverage. We also give a brief account of the vacancy population dynamics.\",\"PeriodicalId\":20016,\"journal\":{\"name\":\"Philosophical Magazine Part B\",\"volume\":\"3 1\",\"pages\":\"375 - 381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13642810208223125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13642810208223125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们进行了广泛的模拟随机顺序吸附和扩散k-mers高达k = 5在方形晶格上,特别注意k = 2的情况。我们观察到,对于k = 2,3,晶格的完全覆盖从未达到,因为存在阻止晶格中孤立空位连接的冻结构型,我们认为对于任何k值都不会达到完全覆盖。特别是覆盖的长期行为不是平均场和非解析的,以t - 1/2为主导项。此外,不同的扩散概率和沉积速率值导致不同的最终覆盖率值。我们还简要介绍了空缺人口动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slow dynamics of k-mers on a square lattice
Abstract We have performed extensive simulations of random sequential adsorption and diffusion of k-mers up to k = 5 on a square lattice with particular attention to the case k = 2. We observe that, for k = 2, 3, complete coverage of the lattice is never reached, because of the existence of frozen configurations that prevent isolated vacancies in the lattice from joining and we argue that complete coverage is never attained for any value of k. In particular the long-time behaviour of the coverage is not mean field and non-analytic, with t −1/2 as the leading term. Morover different values of the diffusion probability and deposition rate lead to different final values of the coverage. We also give a brief account of the vacancy population dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信