Boyang Liu, Ding Wang, Kaixiang Lin, P. Tan, Jiayu Zhou
{"title":"RCA:一种深度协同自编码器异常检测方法","authors":"Boyang Liu, Ding Wang, Kaixiang Lin, P. Tan, Jiayu Zhou","doi":"10.24963/ijcai.2021/208","DOIUrl":null,"url":null,"abstract":"Unsupervised anomaly detection (AD) plays a crucial role in many critical applications. Driven by the success of deep learning, recent years have witnessed growing interest in applying deep neural networks (DNNs) to AD problems. A common approach is using autoencoders to learn a feature representation for the normal observations in the data. The reconstruction error of the autoencoder is then used as outlier score to detect the anomalies. However, due to the high complexity brought upon by over-parameterization of DNNs, the reconstruction error of the anomalies could also be small, which hampers the effectiveness of these methods. To alleviate this problem, we propose a robust framework using collaborative autoencoders to jointly identify normal observations from the data while learning its feature representation. We investigate the theoretical properties of the framework and empirically show its outstanding performance as compared to other DNN-based methods. Empirical results also show resiliency of the framework to missing values compared to other baseline methods.","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":"9 1","pages":"1505-1511"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection\",\"authors\":\"Boyang Liu, Ding Wang, Kaixiang Lin, P. Tan, Jiayu Zhou\",\"doi\":\"10.24963/ijcai.2021/208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised anomaly detection (AD) plays a crucial role in many critical applications. Driven by the success of deep learning, recent years have witnessed growing interest in applying deep neural networks (DNNs) to AD problems. A common approach is using autoencoders to learn a feature representation for the normal observations in the data. The reconstruction error of the autoencoder is then used as outlier score to detect the anomalies. However, due to the high complexity brought upon by over-parameterization of DNNs, the reconstruction error of the anomalies could also be small, which hampers the effectiveness of these methods. To alleviate this problem, we propose a robust framework using collaborative autoencoders to jointly identify normal observations from the data while learning its feature representation. We investigate the theoretical properties of the framework and empirically show its outstanding performance as compared to other DNN-based methods. Empirical results also show resiliency of the framework to missing values compared to other baseline methods.\",\"PeriodicalId\":73334,\"journal\":{\"name\":\"IJCAI : proceedings of the conference\",\"volume\":\"9 1\",\"pages\":\"1505-1511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCAI : proceedings of the conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2021/208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2021/208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection
Unsupervised anomaly detection (AD) plays a crucial role in many critical applications. Driven by the success of deep learning, recent years have witnessed growing interest in applying deep neural networks (DNNs) to AD problems. A common approach is using autoencoders to learn a feature representation for the normal observations in the data. The reconstruction error of the autoencoder is then used as outlier score to detect the anomalies. However, due to the high complexity brought upon by over-parameterization of DNNs, the reconstruction error of the anomalies could also be small, which hampers the effectiveness of these methods. To alleviate this problem, we propose a robust framework using collaborative autoencoders to jointly identify normal observations from the data while learning its feature representation. We investigate the theoretical properties of the framework and empirically show its outstanding performance as compared to other DNN-based methods. Empirical results also show resiliency of the framework to missing values compared to other baseline methods.