通用LTL规范挖掘(T)

Caroline Lemieux, Dennis Park, Ivan Beschastnikh
{"title":"通用LTL规范挖掘(T)","authors":"Caroline Lemieux, Dennis Park, Ivan Beschastnikh","doi":"10.1109/ASE.2015.71","DOIUrl":null,"url":null,"abstract":"Temporal properties are useful for describing and reasoning about software behavior, but developers rarely write down temporal specifications of their systems. Prior work on inferring specifications developed tools to extract likely program specifications that fit particular kinds of tool-specific templates. This paper introduces Texada, a new temporal specification mining tool for extracting specifications in linear temporal logic (LTL) of arbitrary length and complexity. Texada takes a user-defined LTL property type template and a log of traces as input and outputs a set of instantiations of the property type (i.e., LTL formulas) that are true on the traces in the log. Texada also supports mining of almost invariants: properties with imperfect confidence. We formally describe Texada's algorithms and evaluate the tool's performance and utility.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"41 1","pages":"81-92"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"General LTL Specification Mining (T)\",\"authors\":\"Caroline Lemieux, Dennis Park, Ivan Beschastnikh\",\"doi\":\"10.1109/ASE.2015.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal properties are useful for describing and reasoning about software behavior, but developers rarely write down temporal specifications of their systems. Prior work on inferring specifications developed tools to extract likely program specifications that fit particular kinds of tool-specific templates. This paper introduces Texada, a new temporal specification mining tool for extracting specifications in linear temporal logic (LTL) of arbitrary length and complexity. Texada takes a user-defined LTL property type template and a log of traces as input and outputs a set of instantiations of the property type (i.e., LTL formulas) that are true on the traces in the log. Texada also supports mining of almost invariants: properties with imperfect confidence. We formally describe Texada's algorithms and evaluate the tool's performance and utility.\",\"PeriodicalId\":6586,\"journal\":{\"name\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"41 1\",\"pages\":\"81-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2015.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

时间属性对于描述和推理软件行为很有用,但是开发人员很少写下他们系统的时间规范。先前在推断规范方面的工作开发了工具来提取适合特定工具模板的程序规范。本文介绍了一种新的时间规范挖掘工具Texada,用于从任意长度和复杂度的线性时间逻辑(LTL)中提取规范。Texada采用用户定义的LTL属性类型模板和跟踪日志作为输入,并输出属性类型(即LTL公式)的一组实例,这些实例在日志中的跟踪中为真。Texada还支持挖掘几乎不变量:具有不完全置信度的属性。我们正式描述了Texada的算法,并评估了该工具的性能和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General LTL Specification Mining (T)
Temporal properties are useful for describing and reasoning about software behavior, but developers rarely write down temporal specifications of their systems. Prior work on inferring specifications developed tools to extract likely program specifications that fit particular kinds of tool-specific templates. This paper introduces Texada, a new temporal specification mining tool for extracting specifications in linear temporal logic (LTL) of arbitrary length and complexity. Texada takes a user-defined LTL property type template and a log of traces as input and outputs a set of instantiations of the property type (i.e., LTL formulas) that are true on the traces in the log. Texada also supports mining of almost invariants: properties with imperfect confidence. We formally describe Texada's algorithms and evaluate the tool's performance and utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信