挖掘有意义的时间网络是多项式

Time Pub Date : 2020-01-01 DOI:10.4230/LIPIcs.TIME.2020.11
G. Sciavicco, Matteo Zavatteri, T. Villa
{"title":"挖掘有意义的时间网络是多项式","authors":"G. Sciavicco, Matteo Zavatteri, T. Villa","doi":"10.4230/LIPIcs.TIME.2020.11","DOIUrl":null,"url":null,"abstract":"A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism that tackles controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper, we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design of controllable temporal networks mined from traces that also contain information on uncontrollable events. 2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Information systems → Data mining; Computing methodologies → Planning and scheduling; Mathematics of computing → Graph algorithms","PeriodicalId":75226,"journal":{"name":"Time","volume":"1 1","pages":"11:1-11:12"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mining Significant Temporal Networks Is Polynomial\",\"authors\":\"G. Sciavicco, Matteo Zavatteri, T. Villa\",\"doi\":\"10.4230/LIPIcs.TIME.2020.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism that tackles controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper, we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design of controllable temporal networks mined from traces that also contain information on uncontrollable events. 2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Information systems → Data mining; Computing methodologies → Planning and scheduling; Mathematics of computing → Graph algorithms\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"1 1\",\"pages\":\"11:1-11:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2020.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2020.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有不确定性和决策的条件简单时态网络(CSTNUD)是一种同时处理可控和不可控持续时间以及可控和不可控选择的形式体系。在经典的自顶向下的基于模型的工程方法中,设计人员构建CSTNUD来建模、验证和执行一些感兴趣的临时计划。相反,在本文中,我们通过提供一种确定性多项式时间算法来研究自下而上的方法,从一组执行跟踪(即日志)中挖掘CSTNUD。本文为从包含不可控事件信息的轨迹中挖掘可控时间网络的设计铺平了道路。2012 ACM主题分类计算方法→时间推理;信息系统→数据挖掘;计算方法→计划和调度;计算数学→图算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Significant Temporal Networks Is Polynomial
A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism that tackles controllable and uncontrollable durations as well as controllable and uncontrollable choices simultaneously. In the classic top-down model-based engineering approach, a designer builds a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper, we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design of controllable temporal networks mined from traces that also contain information on uncontrollable events. 2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Information systems → Data mining; Computing methodologies → Planning and scheduling; Mathematics of computing → Graph algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信