{"title":"生物学计算机辅助验证技术","authors":"T. Henzinger","doi":"10.1109/FMCAD.2014.6987588","DOIUrl":null,"url":null,"abstract":"We summarize some recent results on using computed-aided verification technology for understanding biological systems. This includes the use of reactive models for specifying cellular mechanisms, the use of symbolic state space exploration for analyzing molecular reaction networks, and the use of SMT solvers for studying the evolution of gene regulatory circuits.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"59 2 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-aided verification technology for biology\",\"authors\":\"T. Henzinger\",\"doi\":\"10.1109/FMCAD.2014.6987588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We summarize some recent results on using computed-aided verification technology for understanding biological systems. This includes the use of reactive models for specifying cellular mechanisms, the use of symbolic state space exploration for analyzing molecular reaction networks, and the use of SMT solvers for studying the evolution of gene regulatory circuits.\",\"PeriodicalId\":6479,\"journal\":{\"name\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"volume\":\"59 2 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2014.6987588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2014.6987588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer-aided verification technology for biology
We summarize some recent results on using computed-aided verification technology for understanding biological systems. This includes the use of reactive models for specifying cellular mechanisms, the use of symbolic state space exploration for analyzing molecular reaction networks, and the use of SMT solvers for studying the evolution of gene regulatory circuits.