{"title":"具有测量误差和滤波的线性率简单生存模型的估计","authors":"S. Shklyar","doi":"10.17713/ajs.v52isi.1771","DOIUrl":null,"url":null,"abstract":"A simple exponential regression model is considered where the rate parameter of the response variable linearly depends on the explanatory variable. We consider complications of the model: censoring of the response variable (either upper censoring or interval observations), the additive classical error or multiplicative Berkson error in the explanatory variable, or a combination of censoring with Berkson errors. We construct or use already-known estimators in the models, and verify their performance in simulations.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation in Linear-Rate Simple Survival Models with Measurement Errors and Censoring\",\"authors\":\"S. Shklyar\",\"doi\":\"10.17713/ajs.v52isi.1771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple exponential regression model is considered where the rate parameter of the response variable linearly depends on the explanatory variable. We consider complications of the model: censoring of the response variable (either upper censoring or interval observations), the additive classical error or multiplicative Berkson error in the explanatory variable, or a combination of censoring with Berkson errors. We construct or use already-known estimators in the models, and verify their performance in simulations.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/ajs.v52isi.1771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52isi.1771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Estimation in Linear-Rate Simple Survival Models with Measurement Errors and Censoring
A simple exponential regression model is considered where the rate parameter of the response variable linearly depends on the explanatory variable. We consider complications of the model: censoring of the response variable (either upper censoring or interval observations), the additive classical error or multiplicative Berkson error in the explanatory variable, or a combination of censoring with Berkson errors. We construct or use already-known estimators in the models, and verify their performance in simulations.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.