Sven Weinzierl, Verena Wolf, Tobias Pauli, D. Beverungen, Martin Matzner
{"title":"检测业务流程中的临时变通方法——一种基于深度学习的分析事件日志数据的方法","authors":"Sven Weinzierl, Verena Wolf, Tobias Pauli, D. Beverungen, Martin Matzner","doi":"10.1080/2573234X.2021.1978337","DOIUrl":null,"url":null,"abstract":"ABSTRACT Business process management distinguishes the actual “as-is” and a prescribed “to-be” state of a process. In practice, many different causes trigger a process’s drifting away from its to-be state. For instance, employees may “workaround” the proposed systems to increase their effectiveness or efficiency in day-to-day work. So far, ethnography or critical incident techniques are used to identify how and why workarounds emerge. We design a deep-learning-based method that helps detect different workaround types in event logs. Our method tracks indications of potential workarounds in the early stages of their emergence among deviating behaviour. Our evaluation based on four real-life event logs reveals that our method performs well and works best for business processes with fewer variations and a higher number of different activities. The proposed method is one of the first information technology artefacts to bridge the boundaries between the complementing research disciplines of organisational routines and business processes management.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"1 1","pages":"76 - 100"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Detecting temporal workarounds in business processes – A deep-learning-based method for analysing event log data\",\"authors\":\"Sven Weinzierl, Verena Wolf, Tobias Pauli, D. Beverungen, Martin Matzner\",\"doi\":\"10.1080/2573234X.2021.1978337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Business process management distinguishes the actual “as-is” and a prescribed “to-be” state of a process. In practice, many different causes trigger a process’s drifting away from its to-be state. For instance, employees may “workaround” the proposed systems to increase their effectiveness or efficiency in day-to-day work. So far, ethnography or critical incident techniques are used to identify how and why workarounds emerge. We design a deep-learning-based method that helps detect different workaround types in event logs. Our method tracks indications of potential workarounds in the early stages of their emergence among deviating behaviour. Our evaluation based on four real-life event logs reveals that our method performs well and works best for business processes with fewer variations and a higher number of different activities. The proposed method is one of the first information technology artefacts to bridge the boundaries between the complementing research disciplines of organisational routines and business processes management.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":\"1 1\",\"pages\":\"76 - 100\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2021.1978337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2021.1978337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Detecting temporal workarounds in business processes – A deep-learning-based method for analysing event log data
ABSTRACT Business process management distinguishes the actual “as-is” and a prescribed “to-be” state of a process. In practice, many different causes trigger a process’s drifting away from its to-be state. For instance, employees may “workaround” the proposed systems to increase their effectiveness or efficiency in day-to-day work. So far, ethnography or critical incident techniques are used to identify how and why workarounds emerge. We design a deep-learning-based method that helps detect different workaround types in event logs. Our method tracks indications of potential workarounds in the early stages of their emergence among deviating behaviour. Our evaluation based on four real-life event logs reveals that our method performs well and works best for business processes with fewer variations and a higher number of different activities. The proposed method is one of the first information technology artefacts to bridge the boundaries between the complementing research disciplines of organisational routines and business processes management.