与未知物体交互过程中手部姿态的鲁棒估计

Chiho Choi, S. Yoon, China Chen, K. Ramani
{"title":"与未知物体交互过程中手部姿态的鲁棒估计","authors":"Chiho Choi, S. Yoon, China Chen, K. Ramani","doi":"10.1109/ICCV.2017.339","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust solution for accurate 3D hand pose estimation in the presence of an external object interacting with hands. Our main insight is that the shape of an object causes a configuration of the hand in the form of a hand grasp. Along this line, we simultaneously train deep neural networks using paired depth images. The object-oriented network learns functional grasps from an object perspective, whereas the hand-oriented network explores the details of hand configurations from a hand perspective. The two networks share intermediate observations produced from different perspectives to create a more informed representation. Our system then collaboratively classifies the grasp types and orientation of the hand and further constrains a pose space using these estimates. Finally, we collectively refine the unknown pose parameters to reconstruct the final hand pose. To this end, we conduct extensive evaluations to validate the efficacy of the proposed collaborative learning approach by comparing it with self-generated baselines and the state-of-the-art method.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"56 1","pages":"3142-3151"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Robust Hand Pose Estimation during the Interaction with an Unknown Object\",\"authors\":\"Chiho Choi, S. Yoon, China Chen, K. Ramani\",\"doi\":\"10.1109/ICCV.2017.339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust solution for accurate 3D hand pose estimation in the presence of an external object interacting with hands. Our main insight is that the shape of an object causes a configuration of the hand in the form of a hand grasp. Along this line, we simultaneously train deep neural networks using paired depth images. The object-oriented network learns functional grasps from an object perspective, whereas the hand-oriented network explores the details of hand configurations from a hand perspective. The two networks share intermediate observations produced from different perspectives to create a more informed representation. Our system then collaboratively classifies the grasp types and orientation of the hand and further constrains a pose space using these estimates. Finally, we collectively refine the unknown pose parameters to reconstruct the final hand pose. To this end, we conduct extensive evaluations to validate the efficacy of the proposed collaborative learning approach by comparing it with self-generated baselines and the state-of-the-art method.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"56 1\",\"pages\":\"3142-3151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

本文提出了一种鲁棒的解决方案,用于在外部物体与手相互作用的情况下准确估计三维手的姿态。我们的主要见解是,物体的形状导致手以手抓的形式配置。沿着这条线,我们同时使用成对深度图像训练深度神经网络。面向对象的网络从对象的角度学习功能掌握,而面向手的网络从手的角度探索手的配置细节。这两个网络共享从不同角度产生的中间观察结果,以创建更知情的表示。然后,我们的系统协同分类手的抓取类型和方向,并使用这些估计进一步约束姿态空间。最后,我们共同对未知的姿态参数进行细化,重建最终的手部姿态。为此,我们进行了广泛的评估,通过将所提出的协作学习方法与自生成基线和最先进的方法进行比较,来验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Hand Pose Estimation during the Interaction with an Unknown Object
This paper proposes a robust solution for accurate 3D hand pose estimation in the presence of an external object interacting with hands. Our main insight is that the shape of an object causes a configuration of the hand in the form of a hand grasp. Along this line, we simultaneously train deep neural networks using paired depth images. The object-oriented network learns functional grasps from an object perspective, whereas the hand-oriented network explores the details of hand configurations from a hand perspective. The two networks share intermediate observations produced from different perspectives to create a more informed representation. Our system then collaboratively classifies the grasp types and orientation of the hand and further constrains a pose space using these estimates. Finally, we collectively refine the unknown pose parameters to reconstruct the final hand pose. To this end, we conduct extensive evaluations to validate the efficacy of the proposed collaborative learning approach by comparing it with self-generated baselines and the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信