Sarah Pirikahu, Geoffrey Jones, Martin L. Hazelton
{"title":"来自病例对照、队列和横断面研究的人群归因风险的贝叶斯可信区间","authors":"Sarah Pirikahu, Geoffrey Jones, Martin L. Hazelton","doi":"10.1111/anzs.12352","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Population attributable risk (PAR) and population attributable fraction (PAF) are used in epidemiology to predict the impact of removing a risk factor from the population. Until recently, no standard approach for calculating confidence intervals or the variance for PAR in particular was available in the literature. Previously we outlined a fully Bayesian approach to provide credible intervals for the PAR and PAF from a cross-sectional study, where the data was presented in the form of a 2×2 table. However, extensions to cater for other frequently used study designs were not provided. In this paper we provide methodology to calculate credible intervals for the PAR and PAF for case–control and cohort studies. Additionally, we extend the cross-sectional example to allow for the incorporation of uncertainty that arises when an imperfect diagnostic test is used. In all these situations the model becomes over-parameterised, or non-identifiable, which can result in standard ‘off-the-shelf’ Markov Chain Monte Carlo (MCMC) updaters taking a long time to converge or even failing altogether. We adapt an importance sampling methodology to overcome this problem, and propose some novel MCMC samplers that take into consideration the shape of the posterior ridge to aid in the convergence of the Markov chain.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"63 4","pages":"639-657"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian credible intervals for population attributable risk from case–control, cohort and cross-sectional studies\",\"authors\":\"Sarah Pirikahu, Geoffrey Jones, Martin L. Hazelton\",\"doi\":\"10.1111/anzs.12352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Population attributable risk (PAR) and population attributable fraction (PAF) are used in epidemiology to predict the impact of removing a risk factor from the population. Until recently, no standard approach for calculating confidence intervals or the variance for PAR in particular was available in the literature. Previously we outlined a fully Bayesian approach to provide credible intervals for the PAR and PAF from a cross-sectional study, where the data was presented in the form of a 2×2 table. However, extensions to cater for other frequently used study designs were not provided. In this paper we provide methodology to calculate credible intervals for the PAR and PAF for case–control and cohort studies. Additionally, we extend the cross-sectional example to allow for the incorporation of uncertainty that arises when an imperfect diagnostic test is used. In all these situations the model becomes over-parameterised, or non-identifiable, which can result in standard ‘off-the-shelf’ Markov Chain Monte Carlo (MCMC) updaters taking a long time to converge or even failing altogether. We adapt an importance sampling methodology to overcome this problem, and propose some novel MCMC samplers that take into consideration the shape of the posterior ridge to aid in the convergence of the Markov chain.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"63 4\",\"pages\":\"639-657\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12352\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12352","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian credible intervals for population attributable risk from case–control, cohort and cross-sectional studies
Population attributable risk (PAR) and population attributable fraction (PAF) are used in epidemiology to predict the impact of removing a risk factor from the population. Until recently, no standard approach for calculating confidence intervals or the variance for PAR in particular was available in the literature. Previously we outlined a fully Bayesian approach to provide credible intervals for the PAR and PAF from a cross-sectional study, where the data was presented in the form of a 2×2 table. However, extensions to cater for other frequently used study designs were not provided. In this paper we provide methodology to calculate credible intervals for the PAR and PAF for case–control and cohort studies. Additionally, we extend the cross-sectional example to allow for the incorporation of uncertainty that arises when an imperfect diagnostic test is used. In all these situations the model becomes over-parameterised, or non-identifiable, which can result in standard ‘off-the-shelf’ Markov Chain Monte Carlo (MCMC) updaters taking a long time to converge or even failing altogether. We adapt an importance sampling methodology to overcome this problem, and propose some novel MCMC samplers that take into consideration the shape of the posterior ridge to aid in the convergence of the Markov chain.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.