Deevan Paul A., A. Neelima, Chitra Prasanthi, N. Kota
{"title":"方法通过提高溶解度和生物利用度来开发盐酸氯吡格雷的技术","authors":"Deevan Paul A., A. Neelima, Chitra Prasanthi, N. Kota","doi":"10.21477/ijapsr.6.2.1","DOIUrl":null,"url":null,"abstract":"Clopidogrel bisulphate (CB) is a crystalline, poorly water-soluble drug of bioavailability less than 50%. The drug is an irreversible inhibitor of the P2Y12 adenosine diphosphate receptor found on the membranes of platelet cells. The present work was performed using different polymers such as Polyvinylpyrrolidone (PVP) K-30 and polyvinyl alcohol with varied surfactants such as Tween 80 in comparison by using superdisintegrants like Sodium Starch Glycolate (SSG) and Microcrystalline Cellulose (MCC). By performing the particle size distribution, the size ranges from 232.6 nm to 995.6 nm and the polydispersity index ranges from 0.11 to 0.96, these ranges indicating the good physical nature of nanoparticles. The drug entrapment efficiency (DEE) of clopidogrel bisulphate nanoparticles was found to be in the range of 30.10% to 94.4%. From the study, it was found that F2 formulation containing PVP K-30 and L-arginine has given the best release in 80mins and the maximum cumulative drug release was 96.8% in comparison with other formulation, and the dissolution studies were performed for the seven formulations of prepared clopidogrel bisulphate granules among which F5 formulation containing crospovidone has given maximum drug release of 91.6% within 80mins. Here we state that the method development technologies improve the solubility and bioavailability studies by producing the nanoparticles.","PeriodicalId":13749,"journal":{"name":"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method Development Technologies for Clopidogrel Bisulphate by Improving Solubility and Bioavailability\",\"authors\":\"Deevan Paul A., A. Neelima, Chitra Prasanthi, N. Kota\",\"doi\":\"10.21477/ijapsr.6.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clopidogrel bisulphate (CB) is a crystalline, poorly water-soluble drug of bioavailability less than 50%. The drug is an irreversible inhibitor of the P2Y12 adenosine diphosphate receptor found on the membranes of platelet cells. The present work was performed using different polymers such as Polyvinylpyrrolidone (PVP) K-30 and polyvinyl alcohol with varied surfactants such as Tween 80 in comparison by using superdisintegrants like Sodium Starch Glycolate (SSG) and Microcrystalline Cellulose (MCC). By performing the particle size distribution, the size ranges from 232.6 nm to 995.6 nm and the polydispersity index ranges from 0.11 to 0.96, these ranges indicating the good physical nature of nanoparticles. The drug entrapment efficiency (DEE) of clopidogrel bisulphate nanoparticles was found to be in the range of 30.10% to 94.4%. From the study, it was found that F2 formulation containing PVP K-30 and L-arginine has given the best release in 80mins and the maximum cumulative drug release was 96.8% in comparison with other formulation, and the dissolution studies were performed for the seven formulations of prepared clopidogrel bisulphate granules among which F5 formulation containing crospovidone has given maximum drug release of 91.6% within 80mins. Here we state that the method development technologies improve the solubility and bioavailability studies by producing the nanoparticles.\",\"PeriodicalId\":13749,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21477/ijapsr.6.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21477/ijapsr.6.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Method Development Technologies for Clopidogrel Bisulphate by Improving Solubility and Bioavailability
Clopidogrel bisulphate (CB) is a crystalline, poorly water-soluble drug of bioavailability less than 50%. The drug is an irreversible inhibitor of the P2Y12 adenosine diphosphate receptor found on the membranes of platelet cells. The present work was performed using different polymers such as Polyvinylpyrrolidone (PVP) K-30 and polyvinyl alcohol with varied surfactants such as Tween 80 in comparison by using superdisintegrants like Sodium Starch Glycolate (SSG) and Microcrystalline Cellulose (MCC). By performing the particle size distribution, the size ranges from 232.6 nm to 995.6 nm and the polydispersity index ranges from 0.11 to 0.96, these ranges indicating the good physical nature of nanoparticles. The drug entrapment efficiency (DEE) of clopidogrel bisulphate nanoparticles was found to be in the range of 30.10% to 94.4%. From the study, it was found that F2 formulation containing PVP K-30 and L-arginine has given the best release in 80mins and the maximum cumulative drug release was 96.8% in comparison with other formulation, and the dissolution studies were performed for the seven formulations of prepared clopidogrel bisulphate granules among which F5 formulation containing crospovidone has given maximum drug release of 91.6% within 80mins. Here we state that the method development technologies improve the solubility and bioavailability studies by producing the nanoparticles.