隐藏主题情感模型

Md. Mustafizur Rahman, Hongning Wang
{"title":"隐藏主题情感模型","authors":"Md. Mustafizur Rahman, Hongning Wang","doi":"10.1145/2872427.2883072","DOIUrl":null,"url":null,"abstract":"Various topic models have been developed for sentiment analysis tasks. But the simple topic-sentiment mixture assumption prohibits them from finding fine-grained dependency between topical aspects and sentiments. In this paper, we build a Hidden Topic Sentiment Model (HTSM) to explicitly capture topic coherence and sentiment consistency in an opinionated text document to accurately extract latent aspects and corresponding sentiment polarities. In HTSM, 1) topic coherence is achieved by enforcing words in the same sentence to share the same topic assignment and modeling topic transition between successive sentences; 2) sentiment consistency is imposed by constraining topic transitions via tracking sentiment changes; and 3) both topic transition and sentiment transition are guided by a parameterized logistic function based on the linguistic signals directly observable in a document. Extensive experiments on four categories of product reviews from both Amazon and NewEgg validate the effectiveness of the proposed model.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Hidden Topic Sentiment Model\",\"authors\":\"Md. Mustafizur Rahman, Hongning Wang\",\"doi\":\"10.1145/2872427.2883072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various topic models have been developed for sentiment analysis tasks. But the simple topic-sentiment mixture assumption prohibits them from finding fine-grained dependency between topical aspects and sentiments. In this paper, we build a Hidden Topic Sentiment Model (HTSM) to explicitly capture topic coherence and sentiment consistency in an opinionated text document to accurately extract latent aspects and corresponding sentiment polarities. In HTSM, 1) topic coherence is achieved by enforcing words in the same sentence to share the same topic assignment and modeling topic transition between successive sentences; 2) sentiment consistency is imposed by constraining topic transitions via tracking sentiment changes; and 3) both topic transition and sentiment transition are guided by a parameterized logistic function based on the linguistic signals directly observable in a document. Extensive experiments on four categories of product reviews from both Amazon and NewEgg validate the effectiveness of the proposed model.\",\"PeriodicalId\":20455,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2872427.2883072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2883072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

已经为情感分析任务开发了各种主题模型。但是简单的主题-情感混合假设阻止了他们找到主题方面和情感之间的细粒度依赖关系。在本文中,我们建立了一个隐藏主题情感模型(HTSM),以显式捕获固执己见的文本文档中的主题一致性和情感一致性,以准确提取潜在方面和相应的情感极性。在HTSM中,1)主题连贯是通过强制同一句子中的单词共享相同的主题分配和在连续句子之间建模主题转换来实现的;2)通过跟踪情感变化,约束主题转移,实现情感一致性;3)主题转换和情感转换都是由基于可直接观察到的语言信号的参数化逻辑函数引导的。对亚马逊和新蛋的四类产品评论进行了大量实验,验证了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Topic Sentiment Model
Various topic models have been developed for sentiment analysis tasks. But the simple topic-sentiment mixture assumption prohibits them from finding fine-grained dependency between topical aspects and sentiments. In this paper, we build a Hidden Topic Sentiment Model (HTSM) to explicitly capture topic coherence and sentiment consistency in an opinionated text document to accurately extract latent aspects and corresponding sentiment polarities. In HTSM, 1) topic coherence is achieved by enforcing words in the same sentence to share the same topic assignment and modeling topic transition between successive sentences; 2) sentiment consistency is imposed by constraining topic transitions via tracking sentiment changes; and 3) both topic transition and sentiment transition are guided by a parameterized logistic function based on the linguistic signals directly observable in a document. Extensive experiments on four categories of product reviews from both Amazon and NewEgg validate the effectiveness of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信