{"title":"基于人工神经网络和紫外线指数的光伏发电功率预测","authors":"Li Sun, Yanxia Sun","doi":"10.47839/ijc.21.2.2583","DOIUrl":null,"url":null,"abstract":"The accuracy of photovoltaic (PV) power generation forecast can seriously affect the penetration ability of PV power into the existing power grid, which is one of the key approaches to achieve emission peak, as well as realize carbon neutrality. In the conventional forecasting methods, Global Horizontal Irradiation (GHI), Diffuse Horizontal Irradiance (DHI), temperature, wind speed, rainfall, etc. are considered as the mainly factors to forecast the PV output power, but ignore the impact of PV power generation caused by the whole PV system’s decay over the 25–30 years lifecycle. The ultraviolet (UV) index, which reflects the quantity of 10–400 nm irradiation, has a strong correlation with such decay and power generation. This paper proposes a novel PV power forecasting model that involving UV index in an artificial neural network, using Adam method to optimize the training process with the Keras-tuner employed for optimization of the hyperparameters. Experiments demonstrate that the proposed model achieves more precise performance than conventional methods.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic Power Forecasting based on Artificial Neural Network and Ultraviolet Index\",\"authors\":\"Li Sun, Yanxia Sun\",\"doi\":\"10.47839/ijc.21.2.2583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of photovoltaic (PV) power generation forecast can seriously affect the penetration ability of PV power into the existing power grid, which is one of the key approaches to achieve emission peak, as well as realize carbon neutrality. In the conventional forecasting methods, Global Horizontal Irradiation (GHI), Diffuse Horizontal Irradiance (DHI), temperature, wind speed, rainfall, etc. are considered as the mainly factors to forecast the PV output power, but ignore the impact of PV power generation caused by the whole PV system’s decay over the 25–30 years lifecycle. The ultraviolet (UV) index, which reflects the quantity of 10–400 nm irradiation, has a strong correlation with such decay and power generation. This paper proposes a novel PV power forecasting model that involving UV index in an artificial neural network, using Adam method to optimize the training process with the Keras-tuner employed for optimization of the hyperparameters. Experiments demonstrate that the proposed model achieves more precise performance than conventional methods.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.21.2.2583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.2.2583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Photovoltaic Power Forecasting based on Artificial Neural Network and Ultraviolet Index
The accuracy of photovoltaic (PV) power generation forecast can seriously affect the penetration ability of PV power into the existing power grid, which is one of the key approaches to achieve emission peak, as well as realize carbon neutrality. In the conventional forecasting methods, Global Horizontal Irradiation (GHI), Diffuse Horizontal Irradiance (DHI), temperature, wind speed, rainfall, etc. are considered as the mainly factors to forecast the PV output power, but ignore the impact of PV power generation caused by the whole PV system’s decay over the 25–30 years lifecycle. The ultraviolet (UV) index, which reflects the quantity of 10–400 nm irradiation, has a strong correlation with such decay and power generation. This paper proposes a novel PV power forecasting model that involving UV index in an artificial neural network, using Adam method to optimize the training process with the Keras-tuner employed for optimization of the hyperparameters. Experiments demonstrate that the proposed model achieves more precise performance than conventional methods.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.