{"title":"康托立方体中的错误识别","authors":"P. Pasteczka","doi":"10.2478/aupcsm-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error recognition in the Cantor cube\",\"authors\":\"P. Pasteczka\",\"doi\":\"10.2478/aupcsm-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2023-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
基于T. Banakh, Sz。Głąb, E. Jabłońska和J. Swaczyna我们提供了无限单消息传输协议的研究。这样的协议与一组可接受的消息(即康托立方的子集)相关联。利用Banach-Mazur博弈,我们证明了所有检测错误的协议都是Baire空间,而一般的(特别是极大的)协议既不是Borel也不是微薄的。我们还证明了康托立方体可以分解为两个薄集,这两个薄集可以被认为是奇偶位的无限对偶。这一结果与D. Niwiński和E. Kopczyński在2014年定义的所谓xor集有关。
Abstract Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube ℤ2ω). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.