临床数据分析中人工智能不确定性量化的需求:提高决策过程中的信任水平

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS
Moloud Abdar, A. Khosravi, Sheikh Mohammed Shariful Islam, Usha R. Acharya, A. Vasilakos
{"title":"临床数据分析中人工智能不确定性量化的需求:提高决策过程中的信任水平","authors":"Moloud Abdar, A. Khosravi, Sheikh Mohammed Shariful Islam, Usha R. Acharya, A. Vasilakos","doi":"10.1109/msmc.2022.3150144","DOIUrl":null,"url":null,"abstract":"Different terms such as trust, certainty, and uncertainty are of great importance in the real world and play a critical role in artificial intelligence (AI) applications. The implied assumption is that the level of trust in AI can be measured in different ways. This principle can be achieved by distinguishing uncertainties in predicting AI methods used in medical studies. Hence, it is necessary to propose effective uncertainty quantification (UQ) and measurement methods to have trustworthy AI (TAI) clinical decision support systems (CDSSs). In this study, we present practical guidelines for developing and using UQ methods while applying various AI techniques for medical data analysis.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"3 1","pages":"28-40"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The need for quantification of uncertainty in artificial intelligence for clinical data analysis: increasing the level of trust in the decision-making process\",\"authors\":\"Moloud Abdar, A. Khosravi, Sheikh Mohammed Shariful Islam, Usha R. Acharya, A. Vasilakos\",\"doi\":\"10.1109/msmc.2022.3150144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different terms such as trust, certainty, and uncertainty are of great importance in the real world and play a critical role in artificial intelligence (AI) applications. The implied assumption is that the level of trust in AI can be measured in different ways. This principle can be achieved by distinguishing uncertainties in predicting AI methods used in medical studies. Hence, it is necessary to propose effective uncertainty quantification (UQ) and measurement methods to have trustworthy AI (TAI) clinical decision support systems (CDSSs). In this study, we present practical guidelines for developing and using UQ methods while applying various AI techniques for medical data analysis.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"3 1\",\"pages\":\"28-40\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/msmc.2022.3150144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/msmc.2022.3150144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 14

摘要

信任、确定性和不确定性等不同的术语在现实世界中非常重要,在人工智能(AI)应用中起着至关重要的作用。隐含的假设是,对人工智能的信任程度可以用不同的方式来衡量。这一原则可以通过区分医学研究中使用的人工智能方法预测中的不确定性来实现。因此,有必要提出有效的不确定性量化(UQ)和测量方法,以建立可信赖的AI (TAI)临床决策支持系统(cdss)。在本研究中,我们提出了开发和使用UQ方法的实用指南,同时应用各种人工智能技术进行医疗数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The need for quantification of uncertainty in artificial intelligence for clinical data analysis: increasing the level of trust in the decision-making process
Different terms such as trust, certainty, and uncertainty are of great importance in the real world and play a critical role in artificial intelligence (AI) applications. The implied assumption is that the level of trust in AI can be measured in different ways. This principle can be achieved by distinguishing uncertainties in predicting AI methods used in medical studies. Hence, it is necessary to propose effective uncertainty quantification (UQ) and measurement methods to have trustworthy AI (TAI) clinical decision support systems (CDSSs). In this study, we present practical guidelines for developing and using UQ methods while applying various AI techniques for medical data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信