Stieltjes变换和Stokes现象

W. Boyd
{"title":"Stieltjes变换和Stokes现象","authors":"W. Boyd","doi":"10.1098/rspa.1990.0058","DOIUrl":null,"url":null,"abstract":"Recently, Berry, Olver and Jones have found uniform asymptotic expansions for the exponentially small remainder terms that result when asymptotic expansions are optimally truncated. These uniform expansions describe the rapid change in the behaviour of the remainders as a Stokes line is crossed. We show how such uniform expansions may be found when a function can be expressed as a Stieltjes transform. Such an approach has the following advantages: the uniform expansion is calculated directly, non-uniform expansions away from the Stokes line are readily found, and explicit error bounds may be established. We illustrate the method by application to the modified Bessel function Kv(z).","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Stieltjes transforms and the Stokes phenomenon\",\"authors\":\"W. Boyd\",\"doi\":\"10.1098/rspa.1990.0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Berry, Olver and Jones have found uniform asymptotic expansions for the exponentially small remainder terms that result when asymptotic expansions are optimally truncated. These uniform expansions describe the rapid change in the behaviour of the remainders as a Stokes line is crossed. We show how such uniform expansions may be found when a function can be expressed as a Stieltjes transform. Such an approach has the following advantages: the uniform expansion is calculated directly, non-uniform expansions away from the Stokes line are readily found, and explicit error bounds may be established. We illustrate the method by application to the modified Bessel function Kv(z).\",\"PeriodicalId\":20605,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.1990.0058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

最近,Berry, Olver和Jones发现了指数小剩余项的一致渐近展开式,当渐近展开式被最优截断时产生。这些均匀的膨胀描述了当斯托克斯线被越过时,剩余物行为的快速变化。当一个函数可以用Stieltjes变换表示时,我们将展示如何找到这样的一致展开。这种方法的优点是:直接计算均匀展开,容易找到远离Stokes线的非均匀展开,并且可以建立明确的误差界限。我们通过对修正贝塞尔函数Kv(z)的应用来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stieltjes transforms and the Stokes phenomenon
Recently, Berry, Olver and Jones have found uniform asymptotic expansions for the exponentially small remainder terms that result when asymptotic expansions are optimally truncated. These uniform expansions describe the rapid change in the behaviour of the remainders as a Stokes line is crossed. We show how such uniform expansions may be found when a function can be expressed as a Stieltjes transform. Such an approach has the following advantages: the uniform expansion is calculated directly, non-uniform expansions away from the Stokes line are readily found, and explicit error bounds may be established. We illustrate the method by application to the modified Bessel function Kv(z).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信