{"title":"南海剩余流三维数值模型研究","authors":"Shuqun Cai, Qizhou Huang, Xiaomin Long","doi":"10.1016/S0399-1784(03)00053-7","DOIUrl":null,"url":null,"abstract":"<div><p>A three-dimensional baroclinic shelf sea model is employed to simulate the tidal and non-tidal residual current in the South China Sea. The four most significant constituents, M<sub>2</sub>, S<sub>2</sub>, K<sub>1</sub> and O<sub>1</sub><span>, are included in the experiments with tidal effect. At most stations, the computed harmonic constants agree well with the observed ones. The circulations of the South China Sea in summer (August) and winter (December) are mainly discussed. It is shown that the barotropic tidal residual current is too weak to affect the South China Sea circulation<span>, whilst the contribution of the baroclinic tidal residual current to the South China Sea circulation would be important in the continental shelf sea areas, especially in the Gulf of Thailand and Gulf of Tonkin. In the deep-sea areas, the upper barotropic or baroclinic tidal residual current is relatively very weak, however, the speed order of the deep baroclinic tidal residual current can be the same as that of the mean current without tidal effect. Moreover, the baroclinic tidal residual current seems to be related to the different seasonal stratification of ocean.</span></span></p></div>","PeriodicalId":100980,"journal":{"name":"Oceanologica Acta","volume":"26 5","pages":"Pages 597-607"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0399-1784(03)00053-7","citationCount":"15","resultStr":"{\"title\":\"Three-dimensional numerical model study of the residual current in the South China Sea\",\"authors\":\"Shuqun Cai, Qizhou Huang, Xiaomin Long\",\"doi\":\"10.1016/S0399-1784(03)00053-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A three-dimensional baroclinic shelf sea model is employed to simulate the tidal and non-tidal residual current in the South China Sea. The four most significant constituents, M<sub>2</sub>, S<sub>2</sub>, K<sub>1</sub> and O<sub>1</sub><span>, are included in the experiments with tidal effect. At most stations, the computed harmonic constants agree well with the observed ones. The circulations of the South China Sea in summer (August) and winter (December) are mainly discussed. It is shown that the barotropic tidal residual current is too weak to affect the South China Sea circulation<span>, whilst the contribution of the baroclinic tidal residual current to the South China Sea circulation would be important in the continental shelf sea areas, especially in the Gulf of Thailand and Gulf of Tonkin. In the deep-sea areas, the upper barotropic or baroclinic tidal residual current is relatively very weak, however, the speed order of the deep baroclinic tidal residual current can be the same as that of the mean current without tidal effect. Moreover, the baroclinic tidal residual current seems to be related to the different seasonal stratification of ocean.</span></span></p></div>\",\"PeriodicalId\":100980,\"journal\":{\"name\":\"Oceanologica Acta\",\"volume\":\"26 5\",\"pages\":\"Pages 597-607\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0399-1784(03)00053-7\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanologica Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0399178403000537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanologica Acta","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0399178403000537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-dimensional numerical model study of the residual current in the South China Sea
A three-dimensional baroclinic shelf sea model is employed to simulate the tidal and non-tidal residual current in the South China Sea. The four most significant constituents, M2, S2, K1 and O1, are included in the experiments with tidal effect. At most stations, the computed harmonic constants agree well with the observed ones. The circulations of the South China Sea in summer (August) and winter (December) are mainly discussed. It is shown that the barotropic tidal residual current is too weak to affect the South China Sea circulation, whilst the contribution of the baroclinic tidal residual current to the South China Sea circulation would be important in the continental shelf sea areas, especially in the Gulf of Thailand and Gulf of Tonkin. In the deep-sea areas, the upper barotropic or baroclinic tidal residual current is relatively very weak, however, the speed order of the deep baroclinic tidal residual current can be the same as that of the mean current without tidal effect. Moreover, the baroclinic tidal residual current seems to be related to the different seasonal stratification of ocean.