波动性下电力市场预测模型分析

G. Uddin, Maziar Sahamkhadam, Farhad Taghizadeh‐Hesary, Muhammad Yahya, O. Tang, P. Cerin, J. Rehme
{"title":"波动性下电力市场预测模型分析","authors":"G. Uddin, Maziar Sahamkhadam, Farhad Taghizadeh‐Hesary, Muhammad Yahya, O. Tang, P. Cerin, J. Rehme","doi":"10.2139/ssrn.3807052","DOIUrl":null,"url":null,"abstract":"Short-term electricity price forecasting has received considerable attention in recent years. Despite this increased interest, the literature lacks a concrete consensus on the most suitable forecasting approach. We conduct an extensive empirical analysis to evaluate the short-term price forecasting dynamics of different regions in the Swedish electricity market (SEM). We utilized several forecasting approaches ranging from standard conditional volatility models to wavelet-based forecasting. In addition, we performed out-of-sample forecasting and back-testing, and we evaluated the performance of these models. Our empirical analysis indicates that an ARMA-GARCH framework with the student’s t-distribution significantly outperforms other frameworks. We only performed wavelet-based forecasting based on the MAPE. The results of the robust forecasting methods are capable of displaying the importance of proper forecasting process design, policy implications for market efficiency, and predictability in the SEM.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Forecasting Models in an Electricity Market under Volatility\",\"authors\":\"G. Uddin, Maziar Sahamkhadam, Farhad Taghizadeh‐Hesary, Muhammad Yahya, O. Tang, P. Cerin, J. Rehme\",\"doi\":\"10.2139/ssrn.3807052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term electricity price forecasting has received considerable attention in recent years. Despite this increased interest, the literature lacks a concrete consensus on the most suitable forecasting approach. We conduct an extensive empirical analysis to evaluate the short-term price forecasting dynamics of different regions in the Swedish electricity market (SEM). We utilized several forecasting approaches ranging from standard conditional volatility models to wavelet-based forecasting. In addition, we performed out-of-sample forecasting and back-testing, and we evaluated the performance of these models. Our empirical analysis indicates that an ARMA-GARCH framework with the student’s t-distribution significantly outperforms other frameworks. We only performed wavelet-based forecasting based on the MAPE. The results of the robust forecasting methods are capable of displaying the importance of proper forecasting process design, policy implications for market efficiency, and predictability in the SEM.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3807052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3807052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

短期电价预测是近年来备受关注的问题。尽管这种增加的兴趣,文献缺乏一个具体的共识,最合适的预测方法。我们进行了广泛的实证分析,以评估瑞典电力市场(SEM)不同地区的短期价格预测动态。我们使用了几种预测方法,从标准条件波动模型到基于小波的预测。此外,我们进行了样本外预测和回验,并对这些模型的性能进行了评估。我们的实证分析表明,具有学生t分布的ARMA-GARCH框架显著优于其他框架。我们只基于MAPE进行了基于小波的预测。稳健预测方法的结果能够显示正确预测过程设计的重要性,市场效率的政策含义,以及SEM中的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Forecasting Models in an Electricity Market under Volatility
Short-term electricity price forecasting has received considerable attention in recent years. Despite this increased interest, the literature lacks a concrete consensus on the most suitable forecasting approach. We conduct an extensive empirical analysis to evaluate the short-term price forecasting dynamics of different regions in the Swedish electricity market (SEM). We utilized several forecasting approaches ranging from standard conditional volatility models to wavelet-based forecasting. In addition, we performed out-of-sample forecasting and back-testing, and we evaluated the performance of these models. Our empirical analysis indicates that an ARMA-GARCH framework with the student’s t-distribution significantly outperforms other frameworks. We only performed wavelet-based forecasting based on the MAPE. The results of the robust forecasting methods are capable of displaying the importance of proper forecasting process design, policy implications for market efficiency, and predictability in the SEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信