{"title":"随机哈密顿系统的中等偏差原理","authors":"Jie Xu, Jiayin Gong, Jie Ren","doi":"10.1051/ps/2023009","DOIUrl":null,"url":null,"abstract":"We prove a moderate deviation principle for stochastic differential equations (SDEs) with non-Lipschitz conditions. As an application of our result, we also study the stochastic Hamiltonian systems.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"84 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A moderate deviation principle for stochastic Hamiltonian systems\",\"authors\":\"Jie Xu, Jiayin Gong, Jie Ren\",\"doi\":\"10.1051/ps/2023009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a moderate deviation principle for stochastic differential equations (SDEs) with non-Lipschitz conditions. As an application of our result, we also study the stochastic Hamiltonian systems.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2023009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2023009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A moderate deviation principle for stochastic Hamiltonian systems
We prove a moderate deviation principle for stochastic differential equations (SDEs) with non-Lipschitz conditions. As an application of our result, we also study the stochastic Hamiltonian systems.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.