M. R. Kasem, H. Arima, Y. Ikeda, A. Yamashita, Y. Mizuguchi
{"title":"高熵合金型过渡金属锆(Fe,Co,Ni,Cu,Ga)Zr2的超导性","authors":"M. R. Kasem, H. Arima, Y. Ikeda, A. Yamashita, Y. Mizuguchi","doi":"10.1088/2515-7639/ac8e34","DOIUrl":null,"url":null,"abstract":"We synthesized a new high-entropy-alloy-type (HEA-type) superconductor (Fe,Co,Ni,Cu,Ga)Zr2 with a T c of 2.9 K. The EDX analyses revealed that the actual composition of the transition-metal site (Tr-site) is Tr = Fe0.17(1)Co0.18(2)Ni0.21(2)Cu0.25(1)Ga0.19(1), which gives the configurational entropy of mixing ΔS mix = 1.60 R for the Tr site. Neutron powder diffraction revealed that the sample has a tetragonal CuAl2-type (space group: #140). The lattice constant of a monotonically decreases with decreasing temperature, but the lattice constant of c does not exhibit a clear shrinkage. Isotropic displacement parameter for both the Tr and Zr sites are large, which is probably caused by the HEA-type Tr site. The small temperature dependences of U iso for both sites also indicate the presence of the local structural disorder in (Fe,Co,Ni,Cu,Ga)Zr2. From electrical resistivity, magnetic susceptibility, and specific heat measurements, bulk superconductivity was confirmed.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Superconductivity of high-entropy-alloy-type transition-metal zirconide (Fe,Co,Ni,Cu,Ga)Zr2\",\"authors\":\"M. R. Kasem, H. Arima, Y. Ikeda, A. Yamashita, Y. Mizuguchi\",\"doi\":\"10.1088/2515-7639/ac8e34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We synthesized a new high-entropy-alloy-type (HEA-type) superconductor (Fe,Co,Ni,Cu,Ga)Zr2 with a T c of 2.9 K. The EDX analyses revealed that the actual composition of the transition-metal site (Tr-site) is Tr = Fe0.17(1)Co0.18(2)Ni0.21(2)Cu0.25(1)Ga0.19(1), which gives the configurational entropy of mixing ΔS mix = 1.60 R for the Tr site. Neutron powder diffraction revealed that the sample has a tetragonal CuAl2-type (space group: #140). The lattice constant of a monotonically decreases with decreasing temperature, but the lattice constant of c does not exhibit a clear shrinkage. Isotropic displacement parameter for both the Tr and Zr sites are large, which is probably caused by the HEA-type Tr site. The small temperature dependences of U iso for both sites also indicate the presence of the local structural disorder in (Fe,Co,Ni,Cu,Ga)Zr2. From electrical resistivity, magnetic susceptibility, and specific heat measurements, bulk superconductivity was confirmed.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/ac8e34\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac8e34","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Superconductivity of high-entropy-alloy-type transition-metal zirconide (Fe,Co,Ni,Cu,Ga)Zr2
We synthesized a new high-entropy-alloy-type (HEA-type) superconductor (Fe,Co,Ni,Cu,Ga)Zr2 with a T c of 2.9 K. The EDX analyses revealed that the actual composition of the transition-metal site (Tr-site) is Tr = Fe0.17(1)Co0.18(2)Ni0.21(2)Cu0.25(1)Ga0.19(1), which gives the configurational entropy of mixing ΔS mix = 1.60 R for the Tr site. Neutron powder diffraction revealed that the sample has a tetragonal CuAl2-type (space group: #140). The lattice constant of a monotonically decreases with decreasing temperature, but the lattice constant of c does not exhibit a clear shrinkage. Isotropic displacement parameter for both the Tr and Zr sites are large, which is probably caused by the HEA-type Tr site. The small temperature dependences of U iso for both sites also indicate the presence of the local structural disorder in (Fe,Co,Ni,Cu,Ga)Zr2. From electrical resistivity, magnetic susceptibility, and specific heat measurements, bulk superconductivity was confirmed.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.