基于神经网络的伪标签地震相自动分类

Ekaterina V. Tolstaya, A. Egorov
{"title":"基于神经网络的伪标签地震相自动分类","authors":"Ekaterina V. Tolstaya, A. Egorov","doi":"10.2523/iptc-22084-ms","DOIUrl":null,"url":null,"abstract":"\n In this paper we propose a method of seismic facies labeling. Seismic facies labeling task consists of assigning specific geological rock types to the pixels in the seismic cube. In our research we use open-source fully annotated 3D geological model of the Netherlands F3 Block. The dataset is divided into training and test cubes. We use the former to train a state-of-the-art deep learning neural network, adding a 3D conditional random field (CRF) layer as a postprocessing step. We apply the pseudo-labeling technique, where the labels of the test dataset are predicted and added to the training set to get more accurate final prediction. To diversify the training dataset, we also apply different types of augmentations, including a domain specific image warping technique. Using the trained network, we predict the facies labels on the test dataset and compute various metrics. The results suggest superior network performance over the existing baseline model.","PeriodicalId":11027,"journal":{"name":"Day 3 Wed, February 23, 2022","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Neural Network-Based Seismic Facies Classification Using Pseudo-Labels\",\"authors\":\"Ekaterina V. Tolstaya, A. Egorov\",\"doi\":\"10.2523/iptc-22084-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper we propose a method of seismic facies labeling. Seismic facies labeling task consists of assigning specific geological rock types to the pixels in the seismic cube. In our research we use open-source fully annotated 3D geological model of the Netherlands F3 Block. The dataset is divided into training and test cubes. We use the former to train a state-of-the-art deep learning neural network, adding a 3D conditional random field (CRF) layer as a postprocessing step. We apply the pseudo-labeling technique, where the labels of the test dataset are predicted and added to the training set to get more accurate final prediction. To diversify the training dataset, we also apply different types of augmentations, including a domain specific image warping technique. Using the trained network, we predict the facies labels on the test dataset and compute various metrics. The results suggest superior network performance over the existing baseline model.\",\"PeriodicalId\":11027,\"journal\":{\"name\":\"Day 3 Wed, February 23, 2022\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, February 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22084-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22084-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种地震相标记方法。地震相标记任务包括将特定的地质岩石类型分配给地震立方体中的像素。在我们的研究中,我们使用了开源的荷兰F3区块的全注释三维地质模型。数据集分为训练立方体和测试立方体。我们使用前者来训练最先进的深度学习神经网络,并添加3D条件随机场(CRF)层作为后处理步骤。我们应用伪标记技术,其中测试数据集的标签被预测并添加到训练集,以获得更准确的最终预测。为了使训练数据集多样化,我们还应用了不同类型的增强,包括特定领域的图像扭曲技术。利用训练好的网络,我们预测了测试数据集上的相标签,并计算了各种指标。结果表明,网络性能优于现有的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Neural Network-Based Seismic Facies Classification Using Pseudo-Labels
In this paper we propose a method of seismic facies labeling. Seismic facies labeling task consists of assigning specific geological rock types to the pixels in the seismic cube. In our research we use open-source fully annotated 3D geological model of the Netherlands F3 Block. The dataset is divided into training and test cubes. We use the former to train a state-of-the-art deep learning neural network, adding a 3D conditional random field (CRF) layer as a postprocessing step. We apply the pseudo-labeling technique, where the labels of the test dataset are predicted and added to the training set to get more accurate final prediction. To diversify the training dataset, we also apply different types of augmentations, including a domain specific image warping technique. Using the trained network, we predict the facies labels on the test dataset and compute various metrics. The results suggest superior network performance over the existing baseline model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信