{"title":"各向异性椭圆方程的极值解和Liouville定理","authors":"Yuan Li","doi":"10.3934/cpaa.2021144","DOIUrl":null,"url":null,"abstract":"We study the quasilinear Dirichlet boundary problem \n\\begin{equation}\\nonumber \\left\\{ \\begin{aligned} -Qu&=\\lambda e^{u} \\quad \\mbox{in}\\quad\\Omega\\\\ u&=0 \\quad \\mbox{on}\\quad\\partial\\Omega,\\\\ \\end{aligned} \\right. \\end{equation} where $\\lambda>0$ is a parameter, $\\Omega\\subset\\mathbb{R}^{N}$ with $N\\geq2$ be a bounded domain, and the operator $Q$, known as Finsler-Laplacian or anisotropic Laplacian, is defined by $$Qu:=\\sum_{i=1}^{N}\\frac{\\partial}{\\partial x_{i}}(F(\\nabla u)F_{\\xi_{i}}(\\nabla u)). $$ Here, $F_{\\xi_{i}}=\\frac{\\partial F}{\\partial\\xi_{i}}$ and $F: \\mathbb{R}^{N}\\rightarrow[0,+\\infty)$ is a convex function of $ C^{2}(\\mathbb{R}^{N}\\setminus\\{0\\})$, that satisfies certain assumptions. We derive the existence of extremal solution and obtain that it's regular, if $N\\leq9$. \nWe also concern the H\\'{e}non type anisotropic Liouville equation, namely, $$-Qu=(F^{0}(x))^{\\alpha}e^{u}\\quad\\mbox{in}\\quad\\mathbb{R}^{N}$$ where $\\alpha>-2$, $N\\geq2$ and $F^{0}$ is the support function of $K:=\\{x\\in\\mathbb{R}^{N}:F(x)<1\\}$ which is defined by $$F^{0}(x):=\\sup_{\\xi\\in K}\\langle x,\\xi\\rangle.$$ We obtain the Liouville theorem for stable solutions and the finite Morse index solutions for $2\\leq N<10+4\\alpha$ and $3\\leq N<10+4\\alpha^{-}$ respectively, where $\\alpha^{-}=\\min\\{\\alpha,0\\}$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extremal solution and Liouville theorem for anisotropic elliptic equations\",\"authors\":\"Yuan Li\",\"doi\":\"10.3934/cpaa.2021144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the quasilinear Dirichlet boundary problem \\n\\\\begin{equation}\\\\nonumber \\\\left\\\\{ \\\\begin{aligned} -Qu&=\\\\lambda e^{u} \\\\quad \\\\mbox{in}\\\\quad\\\\Omega\\\\\\\\ u&=0 \\\\quad \\\\mbox{on}\\\\quad\\\\partial\\\\Omega,\\\\\\\\ \\\\end{aligned} \\\\right. \\\\end{equation} where $\\\\lambda>0$ is a parameter, $\\\\Omega\\\\subset\\\\mathbb{R}^{N}$ with $N\\\\geq2$ be a bounded domain, and the operator $Q$, known as Finsler-Laplacian or anisotropic Laplacian, is defined by $$Qu:=\\\\sum_{i=1}^{N}\\\\frac{\\\\partial}{\\\\partial x_{i}}(F(\\\\nabla u)F_{\\\\xi_{i}}(\\\\nabla u)). $$ Here, $F_{\\\\xi_{i}}=\\\\frac{\\\\partial F}{\\\\partial\\\\xi_{i}}$ and $F: \\\\mathbb{R}^{N}\\\\rightarrow[0,+\\\\infty)$ is a convex function of $ C^{2}(\\\\mathbb{R}^{N}\\\\setminus\\\\{0\\\\})$, that satisfies certain assumptions. We derive the existence of extremal solution and obtain that it's regular, if $N\\\\leq9$. \\nWe also concern the H\\\\'{e}non type anisotropic Liouville equation, namely, $$-Qu=(F^{0}(x))^{\\\\alpha}e^{u}\\\\quad\\\\mbox{in}\\\\quad\\\\mathbb{R}^{N}$$ where $\\\\alpha>-2$, $N\\\\geq2$ and $F^{0}$ is the support function of $K:=\\\\{x\\\\in\\\\mathbb{R}^{N}:F(x)<1\\\\}$ which is defined by $$F^{0}(x):=\\\\sup_{\\\\xi\\\\in K}\\\\langle x,\\\\xi\\\\rangle.$$ We obtain the Liouville theorem for stable solutions and the finite Morse index solutions for $2\\\\leq N<10+4\\\\alpha$ and $3\\\\leq N<10+4\\\\alpha^{-}$ respectively, where $\\\\alpha^{-}=\\\\min\\\\{\\\\alpha,0\\\\}$.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2021144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2021144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extremal solution and Liouville theorem for anisotropic elliptic equations
We study the quasilinear Dirichlet boundary problem
\begin{equation}\nonumber \left\{ \begin{aligned} -Qu&=\lambda e^{u} \quad \mbox{in}\quad\Omega\\ u&=0 \quad \mbox{on}\quad\partial\Omega,\\ \end{aligned} \right. \end{equation} where $\lambda>0$ is a parameter, $\Omega\subset\mathbb{R}^{N}$ with $N\geq2$ be a bounded domain, and the operator $Q$, known as Finsler-Laplacian or anisotropic Laplacian, is defined by $$Qu:=\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}(F(\nabla u)F_{\xi_{i}}(\nabla u)). $$ Here, $F_{\xi_{i}}=\frac{\partial F}{\partial\xi_{i}}$ and $F: \mathbb{R}^{N}\rightarrow[0,+\infty)$ is a convex function of $ C^{2}(\mathbb{R}^{N}\setminus\{0\})$, that satisfies certain assumptions. We derive the existence of extremal solution and obtain that it's regular, if $N\leq9$.
We also concern the H\'{e}non type anisotropic Liouville equation, namely, $$-Qu=(F^{0}(x))^{\alpha}e^{u}\quad\mbox{in}\quad\mathbb{R}^{N}$$ where $\alpha>-2$, $N\geq2$ and $F^{0}$ is the support function of $K:=\{x\in\mathbb{R}^{N}:F(x)<1\}$ which is defined by $$F^{0}(x):=\sup_{\xi\in K}\langle x,\xi\rangle.$$ We obtain the Liouville theorem for stable solutions and the finite Morse index solutions for $2\leq N<10+4\alpha$ and $3\leq N<10+4\alpha^{-}$ respectively, where $\alpha^{-}=\min\{\alpha,0\}$.