连续处理双去偏机器学习非参数推理

K. Colangelo, Ying-Ying Lee
{"title":"连续处理双去偏机器学习非参数推理","authors":"K. Colangelo, Ying-Ying Lee","doi":"10.1920/wp.cem.2019.5419","DOIUrl":null,"url":null,"abstract":"We propose a nonparametric inference method for causal effects of continuous treatment variables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters. Our double debiased machine learning (DML) estimators for the average dose-response function (or the average structural function) and the partial effects are asymptotically normal with nonparametric convergence rates. The nuisance estimators for the conditional expectation function and the conditional density can be nonparametric kernel or series estimators or ML methods. Using a kernel-based doubly robust influence function and cross-fitting, we give tractable primitive conditions under which the nuisance estimators do not affect the first-order large sample distribution of the DML estimators. We justify the use of kernel to localize the continuous treatment at a given value by the Gateaux derivative. We implement various ML methods in Monte Carlo simulations and an empirical application on a job training program evaluation.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Double debiased machine learning nonparametric inference with continuous treatments\",\"authors\":\"K. Colangelo, Ying-Ying Lee\",\"doi\":\"10.1920/wp.cem.2019.5419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a nonparametric inference method for causal effects of continuous treatment variables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters. Our double debiased machine learning (DML) estimators for the average dose-response function (or the average structural function) and the partial effects are asymptotically normal with nonparametric convergence rates. The nuisance estimators for the conditional expectation function and the conditional density can be nonparametric kernel or series estimators or ML methods. Using a kernel-based doubly robust influence function and cross-fitting, we give tractable primitive conditions under which the nuisance estimators do not affect the first-order large sample distribution of the DML estimators. We justify the use of kernel to localize the continuous treatment at a given value by the Gateaux derivative. We implement various ML methods in Monte Carlo simulations and an empirical application on a job training program evaluation.\",\"PeriodicalId\":8448,\"journal\":{\"name\":\"arXiv: Econometrics\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1920/wp.cem.2019.5419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/wp.cem.2019.5419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

我们提出了一种非参数推理方法,在无混杂和存在高维或非参数干扰参数的情况下,连续处理变量的因果效应。我们对平均剂量-响应函数(或平均结构函数)和部分效应的双去偏机器学习(DML)估计是渐近正态的,具有非参数收敛速率。条件期望函数和条件密度的妨害估计量可以是非参数核估计量或级数估计量或ML方法。利用基于核的双鲁棒影响函数和交叉拟合,给出了妨害估计量不影响DML估计量一阶大样本分布的可处理原始条件。我们证明了使用核函数在给定值处通过加托导数来定位连续处理。我们在蒙特卡罗模拟中实现了各种机器学习方法,并在工作培训计划评估中进行了实证应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double debiased machine learning nonparametric inference with continuous treatments
We propose a nonparametric inference method for causal effects of continuous treatment variables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters. Our double debiased machine learning (DML) estimators for the average dose-response function (or the average structural function) and the partial effects are asymptotically normal with nonparametric convergence rates. The nuisance estimators for the conditional expectation function and the conditional density can be nonparametric kernel or series estimators or ML methods. Using a kernel-based doubly robust influence function and cross-fitting, we give tractable primitive conditions under which the nuisance estimators do not affect the first-order large sample distribution of the DML estimators. We justify the use of kernel to localize the continuous treatment at a given value by the Gateaux derivative. We implement various ML methods in Monte Carlo simulations and an empirical application on a job training program evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信