社会网络中的利润最大化与非单调dr -子模最大化

Shuyang Gu, Chuangen Gao, Jun Huang, Weili Wu
{"title":"社会网络中的利润最大化与非单调dr -子模最大化","authors":"Shuyang Gu, Chuangen Gao, Jun Huang, Weili Wu","doi":"10.48550/arXiv.2212.06646","DOIUrl":null,"url":null,"abstract":"In this paper, we study the non-monotone DR-submodular function maximization over integer lattice. Functions over integer lattice have been defined submodular property that is similar to submodularity of set functions. DR-submodular is a further extended submodular concept for functions over the integer lattice, which captures the diminishing return property. Such functions find many applications in machine learning, social networks, wireless networks, etc. The techniques for submodular set function maximization can be applied to DR-submodular function maximization, e.g., the double greedy algorithm has a $1/2$-approximation ratio, whose running time is $O(nB)$, where $n$ is the size of the ground set, $B$ is the integer bound of a coordinate. In our study, we design a $1/2$-approximate binary search double greedy algorithm, and we prove that its time complexity is $O(n\\log B)$, which significantly improves the running time. Specifically, we consider its application to the profit maximization problem in social networks with a bipartite model, the goal of this problem is to maximize the net profit gained from a product promoting activity, which is the difference of the influence gain and the promoting cost. We prove that the objective function is DR-submodular over integer lattice. We apply binary search double greedy algorithm to this problem and verify the effectiveness.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"1 1","pages":"113847"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Profit Maximization in Social Networks and Non-monotone DR-submodular Maximization\",\"authors\":\"Shuyang Gu, Chuangen Gao, Jun Huang, Weili Wu\",\"doi\":\"10.48550/arXiv.2212.06646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the non-monotone DR-submodular function maximization over integer lattice. Functions over integer lattice have been defined submodular property that is similar to submodularity of set functions. DR-submodular is a further extended submodular concept for functions over the integer lattice, which captures the diminishing return property. Such functions find many applications in machine learning, social networks, wireless networks, etc. The techniques for submodular set function maximization can be applied to DR-submodular function maximization, e.g., the double greedy algorithm has a $1/2$-approximation ratio, whose running time is $O(nB)$, where $n$ is the size of the ground set, $B$ is the integer bound of a coordinate. In our study, we design a $1/2$-approximate binary search double greedy algorithm, and we prove that its time complexity is $O(n\\\\log B)$, which significantly improves the running time. Specifically, we consider its application to the profit maximization problem in social networks with a bipartite model, the goal of this problem is to maximize the net profit gained from a product promoting activity, which is the difference of the influence gain and the promoting cost. We prove that the objective function is DR-submodular over integer lattice. We apply binary search double greedy algorithm to this problem and verify the effectiveness.\",\"PeriodicalId\":23063,\"journal\":{\"name\":\"Theor. Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"113847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.06646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.06646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了整数格上非单调dr -次模函数的极大化问题。整数格上的函数被定义为子模性质,类似于集合函数的子模性。dr -子模是整数格上函数的子模概念的进一步扩展,它抓住了收益递减的性质。这些函数在机器学习、社交网络、无线网络等领域有很多应用。子模集函数最大化的技术可以应用于dr -子模函数最大化,例如,双贪婪算法具有$1/2$-近似比,其运行时间为$O(nB)$,其中$n$为基集的大小,$B$为坐标的整数界。在我们的研究中,我们设计了一个$1/2$-近似二进制搜索双贪婪算法,并证明了它的时间复杂度为$O(n\log B)$,显著提高了运行时间。具体而言,我们考虑将其应用于社会网络中的利润最大化问题,该问题的目标是最大化从产品推广活动中获得的净利润,即影响力收益与推广成本之差。证明了目标函数在整格上是dr -次模。将二叉搜索双贪婪算法应用于该问题,并验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Profit Maximization in Social Networks and Non-monotone DR-submodular Maximization
In this paper, we study the non-monotone DR-submodular function maximization over integer lattice. Functions over integer lattice have been defined submodular property that is similar to submodularity of set functions. DR-submodular is a further extended submodular concept for functions over the integer lattice, which captures the diminishing return property. Such functions find many applications in machine learning, social networks, wireless networks, etc. The techniques for submodular set function maximization can be applied to DR-submodular function maximization, e.g., the double greedy algorithm has a $1/2$-approximation ratio, whose running time is $O(nB)$, where $n$ is the size of the ground set, $B$ is the integer bound of a coordinate. In our study, we design a $1/2$-approximate binary search double greedy algorithm, and we prove that its time complexity is $O(n\log B)$, which significantly improves the running time. Specifically, we consider its application to the profit maximization problem in social networks with a bipartite model, the goal of this problem is to maximize the net profit gained from a product promoting activity, which is the difference of the influence gain and the promoting cost. We prove that the objective function is DR-submodular over integer lattice. We apply binary search double greedy algorithm to this problem and verify the effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信