L. Jadhav, R. Patil, Nikhil Borane, S. Mishra, G. Yadav, D. Patil, V. Patil
{"title":"功能化氧化石墨烯和碳纳米管合成含活性纳米结构填料的纳米复合材料的新方法","authors":"L. Jadhav, R. Patil, Nikhil Borane, S. Mishra, G. Yadav, D. Patil, V. Patil","doi":"10.3390/ecsoc-25-11679","DOIUrl":null,"url":null,"abstract":": A novel synthetic method has been developed by utilizing the chemical reactivity of functionalized graphene and CNT with a covalent combination of chemically diverse GO/FCNT and toluene diisocyanate. Thereby yield a synergistic polymer nanocomposite. Comprehensive composite material has simultaneous covalent as well as π - π interactions confirms sp2-hybridized frameworks of graphene oxide and MWCNTs by Raman absorption spectra at 1345 and 1590 cm −1 of D and G band respectively. Toluene diisocyanate and GO/FCNT inspired polymeric formulation obtained by the classical curing reaction initiated by ultrasound sonication. This method allowed 50 wt.% doping of GO/FCNT without segregation ensures good adhesion to the law steel surface. Large surface area and morphological character of GO and FCNT by SEM and TEM ensure stable and dispersed integrated molecules. It has advantages over the high-temperature hazardous curing reaction overcomes the problem of graphene exfoliation and does not allow CNT slipping within the bundle to falls apart at higher concentration.","PeriodicalId":11441,"journal":{"name":"ECSOC-25","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing\",\"authors\":\"L. Jadhav, R. Patil, Nikhil Borane, S. Mishra, G. Yadav, D. Patil, V. Patil\",\"doi\":\"10.3390/ecsoc-25-11679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A novel synthetic method has been developed by utilizing the chemical reactivity of functionalized graphene and CNT with a covalent combination of chemically diverse GO/FCNT and toluene diisocyanate. Thereby yield a synergistic polymer nanocomposite. Comprehensive composite material has simultaneous covalent as well as π - π interactions confirms sp2-hybridized frameworks of graphene oxide and MWCNTs by Raman absorption spectra at 1345 and 1590 cm −1 of D and G band respectively. Toluene diisocyanate and GO/FCNT inspired polymeric formulation obtained by the classical curing reaction initiated by ultrasound sonication. This method allowed 50 wt.% doping of GO/FCNT without segregation ensures good adhesion to the law steel surface. Large surface area and morphological character of GO and FCNT by SEM and TEM ensure stable and dispersed integrated molecules. It has advantages over the high-temperature hazardous curing reaction overcomes the problem of graphene exfoliation and does not allow CNT slipping within the bundle to falls apart at higher concentration.\",\"PeriodicalId\":11441,\"journal\":{\"name\":\"ECSOC-25\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECSOC-25\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecsoc-25-11679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECSOC-25","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecsoc-25-11679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing
: A novel synthetic method has been developed by utilizing the chemical reactivity of functionalized graphene and CNT with a covalent combination of chemically diverse GO/FCNT and toluene diisocyanate. Thereby yield a synergistic polymer nanocomposite. Comprehensive composite material has simultaneous covalent as well as π - π interactions confirms sp2-hybridized frameworks of graphene oxide and MWCNTs by Raman absorption spectra at 1345 and 1590 cm −1 of D and G band respectively. Toluene diisocyanate and GO/FCNT inspired polymeric formulation obtained by the classical curing reaction initiated by ultrasound sonication. This method allowed 50 wt.% doping of GO/FCNT without segregation ensures good adhesion to the law steel surface. Large surface area and morphological character of GO and FCNT by SEM and TEM ensure stable and dispersed integrated molecules. It has advantages over the high-temperature hazardous curing reaction overcomes the problem of graphene exfoliation and does not allow CNT slipping within the bundle to falls apart at higher concentration.