无监督学习中的耦合名义相似度

Can Wang, Longbing Cao, Mingchun Wang, Jinjiu Li, Wei Wei, Yuming Ou
{"title":"无监督学习中的耦合名义相似度","authors":"Can Wang, Longbing Cao, Mingchun Wang, Jinjiu Li, Wei Wei, Yuming Ou","doi":"10.1145/2063576.2063715","DOIUrl":null,"url":null,"abstract":"The similarity between nominal objects is not straightforward, especially in unsupervised learning. This paper proposes coupled similarity metrics for nominal objects, which consider not only intra-coupled similarity within an attribute (i.e., value frequency distribution) but also inter-coupled similarity between attributes (i.e. feature dependency aggregation). Four metrics are designed to calculate the inter-coupled similarity between two categorical values by considering their relationships with other attributes. The theoretical analysis reveals their equivalent accuracy and superior efficiency based on intersection against others, in particular for large-scale data. Substantial experiments on extensive UCI data sets verify the theoretical conclusions. In addition, experiments of clustering based on the derived dissimilarity metrics show a significant performance improvement.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"35 1","pages":"973-978"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Coupled nominal similarity in unsupervised learning\",\"authors\":\"Can Wang, Longbing Cao, Mingchun Wang, Jinjiu Li, Wei Wei, Yuming Ou\",\"doi\":\"10.1145/2063576.2063715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The similarity between nominal objects is not straightforward, especially in unsupervised learning. This paper proposes coupled similarity metrics for nominal objects, which consider not only intra-coupled similarity within an attribute (i.e., value frequency distribution) but also inter-coupled similarity between attributes (i.e. feature dependency aggregation). Four metrics are designed to calculate the inter-coupled similarity between two categorical values by considering their relationships with other attributes. The theoretical analysis reveals their equivalent accuracy and superior efficiency based on intersection against others, in particular for large-scale data. Substantial experiments on extensive UCI data sets verify the theoretical conclusions. In addition, experiments of clustering based on the derived dissimilarity metrics show a significant performance improvement.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"35 1\",\"pages\":\"973-978\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

名义对象之间的相似性并不是直截了当的,特别是在无监督学习中。本文提出了标称对象的耦合相似度度量,该度量不仅考虑属性内的耦合相似度(即值频率分布),而且考虑属性间的耦合相似度(即特征依赖聚合)。通过考虑两个分类值与其他属性的关系,设计了四个度量来计算两个分类值之间的相互耦合相似性。理论分析表明,这两种方法在交叉的基础上具有相当的精度和优越的效率,特别是在处理大规模数据时。在大量UCI数据集上的大量实验验证了理论结论。此外,基于衍生的不相似度度量的聚类实验显示了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled nominal similarity in unsupervised learning
The similarity between nominal objects is not straightforward, especially in unsupervised learning. This paper proposes coupled similarity metrics for nominal objects, which consider not only intra-coupled similarity within an attribute (i.e., value frequency distribution) but also inter-coupled similarity between attributes (i.e. feature dependency aggregation). Four metrics are designed to calculate the inter-coupled similarity between two categorical values by considering their relationships with other attributes. The theoretical analysis reveals their equivalent accuracy and superior efficiency based on intersection against others, in particular for large-scale data. Substantial experiments on extensive UCI data sets verify the theoretical conclusions. In addition, experiments of clustering based on the derived dissimilarity metrics show a significant performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信