套索与因子动物园-横断面的预期收益

Marcial Messmer, F. Audrino
{"title":"套索与因子动物园-横断面的预期收益","authors":"Marcial Messmer, F. Audrino","doi":"10.2139/ssrn.2930436","DOIUrl":null,"url":null,"abstract":"We document that cross-sectional return predictions based on OLS and Lasso type linear methods contain no predictive power for large cap stocks over the last decades. Small and micro cap stocks are highly predictable throughout the entire sample. Based on the 68 firm characteristics (FC) included in our analysis, the variable selection step suggests a highly multi-dimensional return process. Additionally, our Monte Carlo simulations indicate advantages of Lasso type predictions over OLS in panel specifications with a low signal-to-noise ratio. The results are robust to various assumptions.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Lasso and the Factor Zoo - Expected Returns in the Cross-Section\",\"authors\":\"Marcial Messmer, F. Audrino\",\"doi\":\"10.2139/ssrn.2930436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We document that cross-sectional return predictions based on OLS and Lasso type linear methods contain no predictive power for large cap stocks over the last decades. Small and micro cap stocks are highly predictable throughout the entire sample. Based on the 68 firm characteristics (FC) included in our analysis, the variable selection step suggests a highly multi-dimensional return process. Additionally, our Monte Carlo simulations indicate advantages of Lasso type predictions over OLS in panel specifications with a low signal-to-noise ratio. The results are robust to various assumptions.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2930436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2930436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明,在过去几十年里,基于OLS和Lasso型线性方法的横断面收益预测对大盘股没有预测能力。在整个样本中,小型和微型股是高度可预测的。基于我们分析中包含的68个企业特征(FC),变量选择步骤表明了一个高度多维的回报过程。此外,我们的蒙特卡罗模拟表明,在低信噪比的面板规格中,Lasso类型预测优于OLS。结果对各种假设都是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Lasso and the Factor Zoo - Expected Returns in the Cross-Section
We document that cross-sectional return predictions based on OLS and Lasso type linear methods contain no predictive power for large cap stocks over the last decades. Small and micro cap stocks are highly predictable throughout the entire sample. Based on the 68 firm characteristics (FC) included in our analysis, the variable selection step suggests a highly multi-dimensional return process. Additionally, our Monte Carlo simulations indicate advantages of Lasso type predictions over OLS in panel specifications with a low signal-to-noise ratio. The results are robust to various assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信